PHILIPS

3N
&7

Electronic
components
and materials

PHILIPS

2650 MICROPROCESSOR
USER’'S MANUAL

(UPDATE 3)

silnotics

2650 MICROPROCESSOR USER’'S MANUAL (update 3)

Dear Sir,

The accompanying Application Notes supplement your

Signetics 2650 Microprocessor User’s Manuai and are
punched to fit the same binder.

Together with this update we would like to inform you
of the current status of our Microprocessor Support
Hardware and Course Schedule.

Since the last update many new enthusiatic 2650 users
have joined with many new applications for our MOS
Microprocessor. Moreover after several months of
evaluating alternate sources, National Semiconductor
Corporation of Santa Clara decided to second source the
2650, and the contract with Signetics has been signed.

In particular the TWIN Prototype Development System
has gained acceptance as the Industry Standard mainly
due to its unique dual—CPU architecture.

Registration

To ensure that you continue receiving Application Notes
free of charge, it is essential that we have your correct
address. To check on that, please inspect the address label
with which this came to you. If any of the particulars

are incorrect, enter the correct particulars on the upper
part of the registration form you will find in the front of
your Manual and return the form to us.

We shall then transfer the correction to the lower part of
the form which we have kept on file.

Yours faithfully,

Microprocessor Marketing Group.

2650 APPLICATION NOTES

With this update (marked® in the list below) your manual should now contain the following Application Notes:

No. Title Summary
AS50 Serial Input/Output Describes how the Sense/Flag capability of the 2650 can be used for
serial 1/0 interfaces.
AS51 Bit & Byte Testing Procedures Describes several methods of testing the contents of the internal
registers in the 2650.
ASH2 General Delay Routines Describes several ways of writing software time delay routines for the
2650, including formulas for calculating the delay time.
AS53 Binary Arithmetic Routines Provides examples for processing binary arithmetic addition,
subtraction, multiplication, and division with the 2650.
ASbH4 Conversion Routines Describes routines for converting:
— Eight-bit unsigned binary to BCD
— Sixteen-bit signed binary to BCD
— Signed BCD to binary
— Signed BCD to ASCII
— ASCII to BCD
— Hexadecimal to ASCII
— ASCII to Hexadecimal
*ASbb Fixed Point Decimal Arithmetic Describes methods of performing addition, subtraction, multiplication
Routines and division of binary-coded-decimal (BCD) numbers with the 2650.
SP50 2650 Evaluation Printed Circuit Provides a detailed description of the PC1001, an evaluation and
Board (PC1001) design tool for the 2650.
SP51 2650 Demo System Provides a detailed description of the Demo System, a hardware base
for use with the 2650 CPU prototyping board (PC1001 or PC1500).
SP52 Support Software for use with the Provides step-by-step procedures for generating, editing, assembling,
NCSS Timesharing System punching, and simulating Signetics 2650 programs using the NCSS
timesharing service.
SP53 Simulator, Version 1.2 Summarizes the features and characteristics inherent in version 1.2
of the 2650 simulator.
SP54 Support Software for use with the Provides step-by-step procedures for generating, editing, assembling,
General Electric Mark 111 Timesharing simulating, and punching Signetics 2650 programs using General
System Electric’s Mark 11l timesharing system.
*SP55 The ABC 1500 Adaptable Board Describes the various components and applications of the ABC
Computer (Adaptable Board Computer) 1500 system development card.
SS50 PIPBUG Provides a detailed description of PIPBUG, a monitor program
designed for use with the 2650.
SS51 Initialization Describes the procedures for initializing the 2650 microprocessor,
memory, and |/O devices to their described initial states.
MP52 Low-Cost Clock Generator Circuits Describes several clock generator circuits that may be used with the
2650. These circuits are standard TTL logic elements (7400 series).
They include RC, LC and crystal oscillator types.
+*MP53 Address and Data Bus Interfacing Provides several examples of interfacing the 2650 address and data
Techniques busses with ROMs and RAMs, such as the 2608, 2606 and 2602.
*MP54 2650 Input/Output Structures and Examines the use of the 2650's versatile set of I/O instructions

Interfaces

and the interface between the 2650 and 1/O ports. A number of
application examples for both serial and parallel 1/0 are given.

if any of these Application Notes is missing in your manual or if you require additional copies please contact your local
Philips {rganization.

ERRATA

A small number of errors have been found in the Application Notes issued so far.
Please correct your documentation according to the information below.

If you find mistakes or have any ideas for improvements please inform us, so that others can also benefit from it.

Application

Note Page Error Correction
AS53 5, line 56 CO 05 04 CD 02 05
7,line 83 F8 02 BDRR,RO 58 02 BRNR,RO
11, line 181 04 FC LODI,RO 05 FC LODI,R1
SP50 9 Add following note:
“1f noise problems are encountered when operating with a current loop
TTY, the addition of a 4700 pF capacitor at the board location marked
C4 is recommended (see figure 2)"’
14 Teletype connection:
pin 6, Receiver — pin 1, Receiver —
pin 7, Receiver + pin 2, Receiver +
+5V
7 +5V
2,7k 50k$2
7.5kQ
E
TTY TTY
SERIAL IN SERIAL IN
15V 12V
pin 48 +15 V pin 48 +12 V
pin49-15V pin49 -12V
9 15V 12V
13 15V 12V
15 pin 48 +15 V pin48+12V
pin49 -15V pin49-12V
pind +15V pind +12V
ping -15V ping -12V
SP51 5, TABLE 2 ABUS 9 ABUS 10
ABUS 10 ABUS 9
SS50 6, line 200 75 10 CPSL RS 75 18 CPSL RS+WC
8, line 294 12 SPSU 92 LPSU

2650 APPLICATION REPORTS

As an extra service to you copies of the Philips Application Laboratory Reports listed below can be ordered. These reports
are issued as a basis for the Application Notes to be sent to you free of charge later. However, if you think that the
information is of immediate use for your current application, a copy can be ordered from your local Philips Organization.

No. Title Summary

¥ EDP 7519 Sorting Routines Describes methods and programs for sorting single byte numbers,
which are in a list in an incrementing order. Search and bubble sort
methods are outlined.

& EDP 7706 Sorting Routines for Multiple Describes methods and programs for sorting signed and unsigned

Byte Numbers multiple byte numbers.

K MDP 7601 Look-up tables Describes methods for programming look-up tables and gives
suggestions on how to connect the hardware to implement the various
uses of the tables.

% MDP 7604 Look-up and Search Routines This report completes MDP 7601 and describes specific routines for
for the 2650 table look-up and search.
DPM 76103 Additional Facility for the A small modification of the PC1001/PC1500 prototyping card and

« DPM 76104

& EDP7710

PRR22-25-495

PRR22-25-491

PRR22-25-493

+ EDP 7707

.. EDP 7602

PC1001/DS2000

A Software Method for
Generating Cyclic Redundancy
Check Characters

Keyboard Systems for the 2650
Microprocessor

Memory Interface with the
Signetics 2650 Microprocessor

Interfacing the Signetics 2650
Microprocessor with Memory in a
Medium Size System

Dynamic Memory Interface with
the 2650 Microprocessor

Interfacing a High Speed Reader
and a High Speed Punch to the
2650

Binary Floating Point Arithmetic
Routines for the 2650

some additional hardware are required to extend this prototyping
system with a hardware break-point by setting the 15 lever switches
to the required address.

A flexible program is described which will generate sixteen check
characters by performing CRC on any given data pattern. There is a
choice of four code polynominals, but any other 16 degree poly-
nominal can be adopted.

Required hardware and software are described for keyboard systems
with 8, 16, 32 and 63 keys.

Describes the hardware interface with a small size memory system
with 1k8 fusible link PROM (82S115) and 256 bytes static RAM
(2606-1 and 2612).

Describes the hardware interface with a medium size memory
system with 2k8 fusible link PROM (82S115) and 4k8 static RAM
(2602)

Describes the hardware interface with a large size memory system
with 4k8 fusible link PROM (82S115) and 16k8 Dynamic RAM
(2680).

Describes hardware and software interface with the Digitronics
Model 2540 high speed reader and the Facit model 4070 high speed
punch.

Describes binary floating point arithmetic routines for the 2650.

No.

Title

Summary

EDP 7603

EDP 7604

EDP 7605

EDP 7606

EDP 7607

EDP 7609

EDP 7612

EDP 7611

BCD Floating Point Arithmetic
Routines for the 2650

General Protocol for Data
Exchange between a 2650
Microcomputer and Peripheral
Devices

Interfacing a High Speed Punch
and Reader to a 2650 Based
System

Interfacing a CRT Display to a
2650 Microprocessor

Seven Segment LED Display
Drive with the 2650

Software Package for a Diagnostic

Memory Test in a 2650 Micro-
computer

Logarithmic Routine for the
2650 Microprocessor

A Digital Cassette Recorder
Interface for a 2650 Micro-
processor Based System

Describes BCD floating point arithmetic routines for the 2650.

Describes general rules for the software and hardware interface for a
2650 microcomputer and peripheral devices.

Describes hardware and software interfaces with the Digitronics model
2540 high speed reader and the Facit model 4070 high speed punch.
(Based on the protocol as described in EDP 7604.)

Describes both hardware and software interface between a 2650
based microcomputer and a CRT display. (Based on the protocol as
described in EDP 7604.)

Describes the conversion of hex or BCD characters to 7-segment code
and the interface to single and multiple 7-segment LED displays.

Describes a memory test routine able to diagnose and locate faults in
the 2650 microcomputer RAM.

Describes a routine for calculating the natural logarithm (In) of BCD
floating point numbers using the CORDIC algorithm.

Hardware and software interface is described to connect a digital
cassette recorder to the 2650. Phase encoding according to ECMA 34
standard is used. Error detection is performed with a CRC subroutine.

MICROPROCESSOR PUBLICATIONS

The list of technical literature published by Signetics in
support of its MOS and bipolar microprocessor product
offerings continues to grow. Included in this list are
application memos, data sheets, brochures, and technical
manuals.

To obtain a copy of any of the publications listed below,
please contact your local Philips Organization.

TECHNICAL MANUALS

2650 Microprocessor Manual (bound manual) — Contains
the complete specifications for the 2650 microprocessor.
Describes the instruction set, interface signals, the internal
organization, and the electrical characteristics. Includes
user guides to the 2650 Assembler Language and the
2650 Simulator.

2650 Registered Microprocessor Manual Set (loose-leaf) —
Same as above with the addition of all Signetics micro-
processor application memos with automatic updating
service. Order No. 2650BM1000.

Signetics TWIN 2650 Assembly Language Manual — A
user’s guide to the 2650 Assembly Language for the
TWIN Prototype Development System. Order No.
TW09005000.

TWIN Operator’s Guide — Describes all aspects of TWIN

system operation, from unpacking, through switches and

indicators, to the use of the various system development
programs. Order No. TW09003000.

TWIN System Reference Manual — Describes each board
in the TWIN system, with functional descriptions and a
theory of operation at the block diagram level. A know-
ledge of microcomputer development systems and the

2650 microprocessor is assumed. Order No. TW09004000.

Designing with Microcomputers — An introductory text
on microcomputer fundamentals for electronic circuit
and system designers and managers.

DATA SHEETS

— TWIN Microcomputer Prototype Development
System

— PC1001 Microprocessor Prototyping Card *

— DS2000 Microprocessor Demonstration System*
— PC2000 4K Memory Card*

— PC3000 Intelligent Typewriter Controller™

— KT9100 Microprocessor Prototyping Kit*

— AS1000/1100 2650 Assembler Version 3.2*

— SM1000/1100 2650 Simulator Version 1.2*

— PL1000 Signetics Higher Level Language (PLuS)*

— PC1500/KT9500 Adaptable Board Computer (ABC)
Prototyping System™

— 2651 Programmable Communications Interface (PCl)
Integrated Circuit

— 2655 Programmable Peripheral Interface (PPI) Inte-
grated Circuit

BROCHURES

— 2650 Introductory Brochure and Short Form Catalog
— Signetics TestWare Instrument (TWIN)

BIPOLAR MICROPROCESSORS

Contact your local Philips Organization for literature on
our powerful 2- and 4-bit slices, the 3002 and 2901-1,
the fast 8X300 8-bit fixed instruction set bipolar micro-
processor and all the relevant support circuits.

* Included in 2650 Introductory Brochure and Short Form
Catalog.

SIMPLE SUPPORT CIRCUITRY

The Signetics 2650 8-bit, n-channel microprocessor
continues to gain wide acceptance throughout the
industry as an easy to use but powerful micro-
processor.

A completely static microcomputer system can be built
with the 2650 microprocessor as its heart. You can
easily interface logic circuits with the microprocessor
since every input and output can handle one TTL load.
And many of the multiple-sourced and support circuits
can be connected without any extra interfacing — thus
permitting you to design a low cost system.

The 2650 is a single-chip microprocessor made using ion-
implanted, n-channel, silicon-gate process. It has a fixed
command set of 75 instructions, operates on 8-bit
parallel data and can address 32.768 bytes. A single

+5 volt power supply and single-phase TTL clock are all
you need to get the microprocessor up and running. All
bus outputs of the 2650 are three-state and can drive
either one 7400-type load, or four 74LS loads.

Both memory and input/output (I/0) lines operate
asynchronously at any speed up to the maximum data
transfer rate of the memory circuits without additional
buffering. No external latching of data is needed.

Aside from the 40-pin microprocessor IC, there are
many support circuits and development aids in the

2650 family. Some of the specialized interface circuits to
be introduced include the 2651 Programmable Com-
munication Interface (PCl), which accepts program
instructions from the microprocessor and supports
almost any serial-data communication mode. Another
circuit, the 2655, is a Programmable Peripheral Interface
(PPI) that contains three bidirectional 8-bit I/O ports
and an 8-bit data bus to communicate with the processor.

Since all inputs and outputs of the 2650 are TTL
compatible, standard logic circuits can be used for all
interface requirements. The two specialized interface
circuits mentioned earlier — the PCI and PPl — offer
interfaces that are software alterable (rather than hard-
ware alterable) for parallel and serial data applications.

The PCI (Model 2651) is a universal synchronous/
asynchronous data communications controller that
supports almost any serial-data communications link in
full-duplex or half-duplex modes. It accepts serial data
from a peripheral and converts it to parallel data for the
2650 and vice-versa. Inside the 2651 are a baud-rate
generator, a modem controller, data-transmit and receive
buffers and support control logic. The baud-rate generator
has sixteen commonly used baud rates that are software
selectable.

The transmitter and receiver sections of the 2651 can
operate simultaneously and the baud-rate generator can
accept external clocks or use its own internal clock for
all timing. A 28-pin DIP houses the n-channel MOS
device and only a 5 V supply is needed for circuit

operation.

The PPI (Model 2655) contains three 8-bit quasi-
bidirectional ports for 1/0 in a 40-pin DIP. All three
ports are internally multiplexed to feed onto the 8-bit-
wide bidirectional data bus of the 2650. Each port of the
PPl can be software controlled to act as an input, output
or bidirectional bus. The PPl can be programmed to
function in five major operating modes: static, strobed,
bidirectional, serial or serial/timer.

One port of the 2655 can act as a serial 1/0. A 3-MHz
programmable timer or event counter is also available on
the serial port to aid in timing external events. All lines
are TTL-compatible.

To use either of these circuits, just set up the control
words in your program and load the program into the
2650 memory. You can even change the port’s function
in mid-program, depending upon your application.

HARD/SOFTWARE DEVELOPMENT AIDS

Signetics offers 2650 users several development aids for
both hardware and software:

The 2650PC1001: A microprocessor prototyping card
that contains a complete microcomputer on a single
printed-circuit card. On the board are the 2650 micro-
processor, a control and R/W memory, two |/O ports, a
clock and all necessary buffering and interface circuits.

The 2650PC2000: A 4K byte memory card that is
compatible with the PC1001. It contains 32, 21L02

1k x 1 static RAMs. Decoding is provided to select any
block of 1k x 8 and to distinguish cards in a multicard
system.

The 2650DS82000: This is a complete microprocessor
demonstration system that can accept one PC1001 or
PC1500 and one PC2000 or PC1600. It has a built-in
power supply and serial interfaces for RS-232 and TTY
inputs.

The 2650 KT9100: This is a microprocessor proto-
typing kit that contains the 2650 microprocessor and
enough support circuits to permit the development of a
small system.

The 2650PC1500/KT9500: The Adaptable Board
Computer is a modular microcomputer that contains the
microprocessor, memory, |/O ports and support circuitry.
It also permits user-designed circuits to be directly wired
on the board. Two forms of the ABC system are available:
the PC1500 fully assembled version and the KT9500 kit.

The 2650PC1600: This is a resident assembler. It accepts

a program written in 2650 Assembly Language as an

input, and produces a paper tape containing a hexadecimal
translation of the program. This hexadecimal tape has a
format suitable for input to the PC1001 or ABC1500
prototyping boards, via the PIPBUG control program
which is included on both these boards. The PC1600

also fits into the DS2000 Demo Base.

For software support and development debugging several
different programs are available:

Assembler: The 2650 assembly language (PIPASM) is a
symbolic language designed to simplify the writing of
programs for the 2650. It is written in FORTRAN IV
and is modular — it can be executed in an overlay mode
if the processor memory can’t handle the entire program.
Two passes are used to generate the symbol table, issue
error messages, produce a program listing and a
computer-readable object listing. Two versions are
available: the AS1000 for 32-bit machines and the
AS1100 for 16-bit machines. Also available on
TYMSHARE, GE, and NCSS timesharing services.

Simulator: The 2650 simulator (PIPSIM) isa FORTRAN
IV program that may be used to simulate the execution
of your program without using the 2650. PIPSIM
maintains its own internal FORTRAN storage registers,
to describe the 2650 program, its registers, the ROM/
RAM configuration and input data. There are two
versions available: the SM1000 for 32-bit machines and
the SM1100 for 16-bit units. Also available on
TYMSHARE, GE, and NCSS timesharing services.

Signetics Higher Level Language (PLuS): A PL-type
microprocessor programming language which the
programmer uses to replace many lines of machine code
with a single statement. The PLuS compiler is available in
32-bit format and also on TYMSHARE and NCSS time-
sharing services.

TWIN PROTOTYPE DEVELOPMENT SYSTEM

TWIN, a powerful and unique prototyping and develop-
ment system, was recently added to Signetics growing
list of product offerings.

TWIN consists of interdependent subsystems, each
contributing to the total task of implementing user
microprocessor applications from initial concept to
actual hardware operation. The system closely

resembles a general-purpose minicomputer during the
initial stages of product development, and allows source
programs to be entered, edited and assembled into object
programs. Object programs may be executed simply as
programs, or as part of a user’s product emulation. When
the programs have been run and debugged to the user’s
satisfaction, the TWIN system is capable of programming
PROM devices for inclusion in the user’s prototype
hardware.

10

Initially announced in Europe early last year, TWIN has
gained acceptance as the industry standard for prototype
development systems. Because of its dual-CPU architecture,
TWIN is capable of supporting virtually any eight or
sixteen-bit microprocessor, including all of Signetics main-
thrust MOS and bipolar microprocessors. One CPU,

called the “master’’, controls and supervises all system
resources. The other, called the ““slave”’, supports all user-
defined development functions.

Since the “master’’ and “’slave’’ need not be the same
microprocessor, the TWIN system will never become
obsolete. Only the slave CPU must match the user’s selected
microprocessor for design-in applications.

Prior to the emergence of TWIN, microprocessor users
requiring a development system have had to purchase
one with the certainty that if they decided to change or
upgrade to a new processor, it would be necessary to
purchase another development system.

A typical TWIN system consists of the program develop-
ment computer, a CRT terminal for data entry and
display, a dual-drive floppy disk unit for mass storage and
initial program loading, and a TestWare In-Circuit
Emulator cable, called TWICE, to connect the TWIN
system to the user’s prototype hardware. As options,
additional disk drivers may be added and a line printer
added for hard copy output of data. A TTY may also be
used for data entry or hard copy output.

TWIN is provided with a full range of supporting software,
including a disk-based operating system, a text editor, a
resident assembler, and extensive debugging and diagnostic
capabilities.

The TWIN PROM programming capability lets the user
program his memory with the object programs created by
the system in the earlier phase of development, thus
simulating most of the final hardware. The Debug
software package lets the user trace program execution,
examining the contents of RAM at selected locations and
checking CPU status and 1/0 operations. Thus the
complete range of user needs is met, beginning with a
user program on paper and ending with final execution in
hardware.

The TWIN system comes in two configurations. Super
TWIN is a fully configured microcomputer development
system that incorporates a CRT, printer, floppy disk
unit, TWICE cable, and the dual-CPU development
computer. Basic TWIN is essentially the same system
without a CRT terminal or printer.

System features include a dual memory expandable from
16K to 64K bytes, 16-bit address and instruction busses,
RS-232 and current-loop interfaces with transmission
speeds ranging from 110 to 1200 baud, the TWICE cable,
and all system software and supporting documentation.

MICROPROCESSOR COURSES

A series of one, two and three-day courses have been
arranged and will be given in Eindhoven, The Netherlands,
and will cover all aspects of the Signetics 2650 MOS and
8X300 bipolar microprocessors. The course language will
be English. Also contact your local Philips Organization
for courses held locally in your own language.

1977 PROGRAM

April 5 — Introduction to Microcomputers

April 7 — Designing with Microprocessors
April 19,20 — 8X300 Intensive Workshop
April 26,27,28 — 2650 Intensive Workshop

May 3,4,56 — 2650 System Design Workshop
May 10,11,12 — PLuS Course

May 23,24 — TWIN System User Course

June 7 — Introduction to Microcomputers
June 8 — Designing with Microprocessors
June 14,15,16 — 2650 Intensive Workshop

Our preliminary course program for the second half of
this year is as follows:

August 16 — Introduction to Microcomputers
August 18 — Designing with Microprocessors
August 23,24,25 — 2650 Intensive Workshop
September 5,6,7 — 2650 System Design Workshop
September 14,15,16 — PLuS Course

September 20,21 — 8X300 Intensive Workshop
September 22,23 — TWIN System User Course
October 4,5,6 — 2650 Intensive Workshop
October 19,20,21 — PLuS Course

October 25,26 — 8X300 Intensive Workshop
October 27,28 — TWIN System User Course

DESCRIPTION OF THE COURSES

Course: Introduction to Microcomputers
1-day Course

This basic course is intended for those engineers, salesmen,
and managers who are not familiar with logic design. As a
background, the course presents the developments that
have made microprocessors possible and focuses on the
advantages of microprocessor-bassd design and the trade-
offs between microprocessor-based solutions and the

more conventional ones. The use of microprocessors

from three different viewpoints — design, marketing and
production — is described and the course reviews the
fundamental concepts of the development cycle.

Course: Designing with Microprocessors
1-day Course

This course has a two-fold objective. That of familiariza-
tion of engineers and programmers with microprocessor
fundamentals, and demonstrating the application of
Signetics 2650 microprocessors to system design. A real-
life design problem — an intelligent typewriter system —
is posed and solved. This design example also serves to
illustrate the important differences between micro-
processor and random logic techniques, and illustrates
the simplicity of using the Signetics 2650 microprocessor.

Course: 2650 Intensive Workshop
3-day Course

This intensive workshop of lectures and laboratory work
is intended primarily for logic designers. Divided into
several sections, the course describes the 2650 instruction
repertoire including instruction formats and addressing,
the software development cycle, interface requirements
and the design of interface circuits. The objective of this
course is to provide participants with the knowledge and
experience necessary to apply the 2650 microprocessor
to the solution of real-life design problems. Accordingly,
practical work also assumes a major role in this course.

Course: 2650 System Design Workshop
3-day Course

For those who have completed the three-day intensive
workshop, or for those familiar with the 2650 but lack
design experience, the workshop offers mainly practical
work. Problem solving with a microcomputer system,
standard hardware interfacing methods, hardware
system design and the program development are all
included. This is a course only for those with a good
2650 background, but lack experience in tackling a
design problem. Taking both courses gives complete
capability to produce one’s own system designs.

Course: TWIN System User Course
2-day Course

This course is principally for engineers and programmers
familiar with the 2650 microprocessor and its instruction
repertoire. The course develops a practical understanding
of Signetics TWIN Prototype Development System. This
system includes a development computer, dual floppy
disk unit, display terminal with keyboard, high speed
printer and in-circuit emulator TWICE. Laboratory work
enables participants to execute a hardware/software
development cycle.

11

Course: 8X300 Intensive Workshop
2-day Course

This course is intended for users of the bipolar 8X300
microprocessor and provides a theoretical and practical
background to 8X300 hardware, software and interface
circuits. Each participant has the personal use of an
8X300 system development computer for course work.
Participants can gain the knowledge necessary for using
the 8X300 to solve real-life design problems.

Course: PLuS Course
3-day Course

The PLuS course (Programming Language for Micro
Systems) is an introduction to high level language
programming for hardware-oriented designers. Trade-offs
between high level and assembly languages are discussed,
including basic concepts of high level language program-
ming. High level language enables a designer to develop
machine language code with less effort and fewer state-
ments than with assembly language.

Due to the large amount of interest in our training
courses, an early enrolment through your Philips
Organization is strongly advised.

© N.V. Philips’ Gloeilampentabrieken
This information is furnished for guidance, and with no guarantees as to its accuracy or completeness; its publication conveys no licence under any patent or other right,

nor does the publisher assume liability for any consequence of its use; specifications and availability of goods mentioned in it are subject to change without notice; it is not
to be reproduced in any way, in whole or in part, without the written consent of the publisher.

9399 509 59401

SERIAL INPUT/OUTPUT.................

Sinnotics

SERIAL INPUT/OUTPUT Assn

INTRODUCTION

The Sense/Flag capability of the Signetics 2650 micro-
processor can be used for serial /O interfaces. The Sense
input pin is directly connected to a bit in the micro-
processor’'s Program Status Word. A high level on the
Sense pin appears as a binary one whiie a low level appears
as a binary zero. The Sense bit in the PSW can be stored or
tested by the program. The Flag bit in the PSW is a simple
latch that drives the Flag output pin. A program can set
the Flag bit to a binary one, which causes a high level, one
TTL load on the flag output pin. Setting the Flag bit to
binary zero causes a low level on the Flag output pin.

APPLICATIONS

The most common use for the Sense/Flag capability would
be in interfacing to a keyboard based terminal where the
data is received or transmitted as bit serial. All bit manipu-
lation and timings such as 8-bit serial-to-parallel conversion
can be done by software running on the 2650. The software
works by storing or setting the two bits in the Program
Status Word which reflect or control the levels at the pins
of the chin. External hardware is required simply to
interface with line levels. No clock synchronization or
address decoding hardware is necessary, since the Sense
and Flag pins are independent of the normal /O bus
structure.

Two examples of device interfaces and software are given
below; for a 1200 baud RS232-type CRT terminal and for
a 110 baud Teletype. Figure 1 shows the RS232 interface.
Half of the Signetics 8T 15 dual line driver is used to trans-
mit to the terminal from the Flag pin, while half of a

+12v
2650 8 Vee

TO 1/0 DEVICE

H

FLAG
%(BT15) =
Vee OPEN

-12v
HYSTERESIS| o o /‘\

MILT
MiL-

OM 1/0 DEVICE DRIVER
SENSE|
%(8T16)
STROBE| =
+5

FIGURE |
RS-232 INTERFACE

2650 MICROPROCESSOR
APPLICATION MEMO

Signetics 8T16 dual line receiver is used to receive from
the device into the Sense pin. The interface to a Teletype
model 33 is shown in Figure IlI. A TTL open collector gate
is used to provide the 20 milli-amp loop to the TTY

+5

2200
2650

T

20MIL TTY RECEIVER
FLAG —q o

% 7403

SENSE T

4049 =

FIGURE Il
TTY MODEL 33 INTERFACE FULL DUPLEX

TTY DRIVER

receiver. For receiving from the TTY a CMOS gate is used
to provide the necessary noise immunity.

SOFTWARE

All definitions of baud rate, character formats, and line
characteristics are done in the software. For these examples,
communication is asynchronous bit-serial over a full duplex
line. Figure 111 shows the format of a 8-bit character (seven
bits plus parity) headed by a start bit and followed by stop
bits. The line levels are:

low = start bit or binary zero

high = ¢ton hit or hinarv one
nign = stop bit or binary cne
I——’STO?EITS
SYARTB'Yj ——
r--r--r--r--r--F--r--r--p——
1 1 1 ' I 1 I | 1
1 I ! t I 1 1] 1
. J
~
8 BITS OF DATA

PIP ASSEMBLER VERSION 2 LEVEL 1 PAGE 1
LINE ADDR LABL 81 B2 B3 B4 FRRUR SOURCE
1 °
e P EWy 1
! P ¢
3 Z fre
S LcoM EQU HYQ2! LOGICAL COMPARE
CAK £EQU H'%' CARRY
SENS EQU H80 SENSE
FLAG LQU HY40" FLAG
11 £QU H'201 INTERRUPT INHIBIT
10C EQu H'20" INTER DIGIT CARRY
OVF EQU HY 04" OVEFFLOW
RO £Qu 0
R1 EQU }
4 R2 EQU
K3 £QU 3
UN EQU 3
EQ EQU 0
LT EQU 2
[EQuU 1
wC EWY H*08"
RS EQU HY1Q?
[y H'S00°
0 0500 76 40 CHIO PPSU FLAG INPUT WITH A BIT 8Y BIT ECHO
“ 2 75 08 CPS wC
5 4 05 00 LoD R 0
6 06 08 LODIyR2 8
8 0508 12 TEST Sg?g L1 TEST LOOP TESTS FOR THE START BIT
’
g 5? z% 29 %EgGvUN DIFEA‘G‘- HALF A DELAY TO MIDOLE OF BIT
74 @
% 0510 3F 05 20 BIT BSTAsUN DLAY DELAYs THEN KEAD THE NEXT BIT
SPS|
2 3.5 80 ANU‘{;HU H180"
6 51 RRRoR1
7 6l 10RZ R1
3 8 Cl STRZ Ré
3 9 1A 04 BCTR,LT 4 RQ ECHO THE 8IT
3 B8 74 40 CPSU LAG
3 0 %B 02 BCTRYUN NEXT
& F 0557 6 40 gEkO PPSU " FLAG
4 1 0521 FA 6D EXT BORRsRZ BIT
4 3 3F 05 20 BSTAsUN DLAY
4 6 45 TF ANDIsR] HY7F
44 8 17 RETCHUN
t ° YIMIESDDCEGY FDRN}gg[‘) BAUD RS232 TERMINAL
9 9 04 3A oLy .
: 28 052 18 02 BLT&-UN DLl
“ 0 052D 04 59 DLAY LODIsRO HI59 ¢
5 2F 0S52F F8 TE otl BURKR RO $
5 1 17 RETC yUN i .
H + TIMING DéLAV FOR 110 BAUD TELETYPE i
PIP ASSEMBLER VERSION 2 LEVEL 1 PAGE 2
LINE ADDR LABL Bl B2 B3 B4 ERROR SOURCE
53 0532 0532 0 TDLA EORZ RO
54 0533 FG 1E BORR RO $
55 0535 F8 7t BORRyRO 3
S6 0537 0537 F8 TE TOLY BORR4RO $
57 0539 04 ES LODIsRO HYES?
58 0538 F8 7 BURRsRO $
59 0530 17 RETCyUN
60 ENOD
TOTAL ASSEMBLER ERNOKRS = 0

The internal logic of the program shown in Figure 1V (the
program listing) is to sense each incoming bit of the
character and to output the bit in turn for the full duplex
line. The Sense input is tested in the loop at ‘TEST' for the
transition to zero indicating the start bit. The program then
delays one half of a bit time to the center of the start bit.
At this point the echoing of the character starts by clearing
the Flag bit which outputs the start bit transition. At ‘BIT’
the program then delays one full bit time to the center of
the data bit. The Sense line is tested and that bit value
is rotated into register one. The bit value is then used to set
or clear the Flag bit for the echo. At ‘'NEXT' is the test

that controls the loop to get only eight bits. Figure V is a
picture of the levels and timings when echoing a ‘U’.

The bit timing is done by a subroutine which simply
counts cycles for the appropriate baud rate. The example
program shows both a 1200 baud delay at ‘DLAY’ and a
110 baud delay at ‘TLAY’. The conversion from instruction
cycles to milliseconds is based on a 1MHz clock rate. Clock
stability is only moderately important since each character
involves only nine sample times and each start bit redefines
the base line for all timings.

DATA BITS

SAMPLE T'MESM
I
| 1

1 1 I

| I 1
FLAG BIT 1
I

STARTBIT rSTOP BITS
- MW

'

1

1

1

I

>

—————

J LSTOP BITS

START BITJ

DATABITS

FIGURE V

&\!\\“ wopp

from the world-wide Philips Group of Companies

EUROPEAN SALES OFFICES

Austria: Osterreichische Philips, Bauelemente Industrie G.m.b.H., Zieglergasse 6, Tel. 93 26 11, A-1072 WIEN.
Belgium: M.B.L.E., 80, rue des Deux Gares, Tel. 523 00 00, B-1070 BRUXELLES.

Denmark: Miniwatt A/S, Emdrupvej 115A, Tel. (01) 69 16 22, DK-2400 KOBENHAVN NV.

Finland: Oy Philips Ab, Elcoma Division, Kaivokatu 8, Tel. 1 72 71, SF-00100 HELSINKI 10.

France: R.T.C., La Radiotechnique-Compelec, 130 Avenue Ledru Rollin, Tel. 355-44-99, F-75540 PARIS 11.
Germany: Valvo, UB Bauelemente der Philips G.m.b.H., Valvo Haus, Burchardstrasse 19, Tel. (040) 3296-1, D-2 HAMBURG 1.
Greece: Philips S.A. Hellénique, Elcoma Division, 52, Av. Syngrou, Tel. 915311, ATHENS.

Ireland: Philips Electrical (Ireland) Ltd., Newstead, Clonskeagh, Tel. 69 33 55, DUBLIN 14.

Italy: Philips S.p.A., Sezione Elcoma, Piazza IV Novembre 3, Tel. 2-6994, 1-20124 MILANO.

Netherlands: Philips Nederland B.V., Afd. Elonco, Boschdijk 525, Tel. (040) 79 33 33, NL-4510 EINDHOVEN.
Norway: Electronica A.S., Vitaminveien 11, Tel. (02) 15 05 90, P. O. Box 29, Grefsen, OSLO 4.

. ili Sle it =1=7-] v ~ey 1iharéa Aanbhana~a L Tal £O0 N4 04 1 I1IQGDMNA 4
Pc.'!uga!. Ph.l:ps Pcrtugueoa SAR.L. Av. Eund. Duharte Pacheco O, I1€1. 00 V1 &1, LIODUA 1.

Spain: COPRESA S.A., Balmes 22, Tel. 301 63 12 BARCELONA 7.

Sweden: ELCOMA AB., Lidingdvagen 50, Tel. 08/67 97 80, S-10 250 STOCKHOLM 27.

Switzerland: Philips A.G., Elcoma Dept., Edenstrasse 20, Tel. 01/44 22 11, CH-8027 ZURICH.

Turkey: Turk Philips Ticaret A.S., EMET Department, Glimussuyu Cad. 78-80, Tel. 45.32.50, Beyoglu, ISTANBUL.
United Kingdom: Mullard Ltd., Mullard House, Torrington Place, Tel. 01-580 6633, LONDON WC1E 7HD.

©N.V. Philips’ Gloeilampentfabrieken
This information is furnished for guidance, and with no guarantees as to its accuracy or completeness; its publication conveys no licence under any patent or other right, nor

does the publisher assume liability for any consequence of its use; specifications and availability of goods mentioned in it are subject to change without notice; it is not to be
reproduced in any way, in whole or in part, without the written consent of the publisher.

Printed in The Netherlands 2-76 9399 509 52461

BIT AND BYTE
TESTING
PROCEDURES
ASH1

sinnoLics

BIT AND BYTE TESTING PROCEDURES ASS]

SUMMARY

This applications memo describes several methods of testing
the contents of the internal registers in the Signetics
2650 Microprocessor.

The following test examples are given:
® Specific bit(s) in a register.
® Positive, negative, or zero-contents of a register.

® Contents of a register compared with a value (equals,
greater than, or less than).

® |nterdigit-carry (IDC), overflow (OVF), and carry (C)
flags in the program status word.

INTRODUCTION

As a result of an operation on register(s) of the 2650
register bank, five bits (bits 7, 6, 5, 2, and 0) in the Program
Status Lower (PSL) portion of the Program Status Word
(PSW) register can be affected.

7 6 5 4 3 2 1

(es]

CC1 | CCO | IDC | RS | WC | OVF | COM | C

PROGRAM STATUS LOWER (PSL)

These bits are affected as follows:

CC1, CCO: Condition Code Bits

RESULT OF
CONDITION |} 5AD/STORE, SELECTIVE
CODE ARITHMETIC, COMPARE | TESTS ON
cc1 cco LOGICAL INSTRUCTION| BITS (TMI,
INSTRUCTIONS TPSU, & TPSL)
0 0 Zero Equal All bits 1
0 1 Positive Greater Than —
1 0 Negative Less Than Not all bits 1

IDC: Interdigit Carry/Borrow Bit

The IDC bit is affected by arithmetic operations as well
as rotation.

0 = Interdigit borrow/no interdigit carry
1 = Interdigit carry/no interdigit borrow

OVF: Overflow Bit. Arithmetic Operation
The overflow bit in arithmetic operations is set as follows:

Operand 1 + Operand 2— Result

2650 MICROPROCESSOR
APPLICATIONS MEMO

SIGN ADD SuB
OVF OVF

OPERAND 1 OPERAND 2 RESULT

+ +

+ o+ + +
o+
+

+
+

1
O = 0000 -=0
OO0 o0O - =000

OVF: Overflow Bit. Rotate Operation

Condition: WC = 1, if WC = 0, the OVF bit is not
affected.

The overflow bit is set as follows:

OPERAND SIGN
BEFORE AFTER
ROTATE ROTATE OVF
+ 0
1
+ 0
0

C: Carry/Borrow Bit

The Carry bit is affected by arithmetic operations as well
as rotation.

0 = borrow/no carry
= carry/no borrow

BIT TESTING PROCEDURES

The bits of a register Rx (register zero Ro or any register
R1, R2 or R3 in the selected register bank) can be tested
as follows:

C
B Y
Y C
T L
E E
S | S
TEST FOR ‘0’ IN BIT 3 OF Rx
TMI, Rx H’'08’ 1) 2 3
BCTR,2 LBL *Branch if bit 3 is zero. 2 | 3
4 6
or:
ANDI, Rx H’'08’ 2) 2 2
BCTR,0 LBL *Branch if bit 3 is zero. 2 13
4 5

While the second test is faster, it affects the contents of Rx.

SIGNETICS BIT AND BYTE TESTING PROCEDURES » AS51

BIT TESTING PROCEDURES (Continued)

TEST FOR ‘1" IN BIT 3 OF Rx

TMI, Rx H'08’ 1)
BCTR,0 LBL *Branch if bit 3 is one.

AINON
w w

or:

ANDI, Rx H'08’ 2)
BCFR,0 LBL *Branch if bit 3 is one.

AINN

2
3
5

While the second test is faster, it affects the contents of Rx.

TEST FOR‘0O' INBIT 1 ORBIT 30R BIT 6 OF Rx

TMI, Rx H'4A’ 1) 2 3
BCTR,2 LBL *Branch if one of the 2 3
tested bits is zero. 4 6
TESTFOR‘T"INBIT1ORBIT30ORBIT6 OF Rx
ANDI, Rx H'4A’ 2) 2 2
BCFR,0 LBL *Branch if one of the 2 3
tested bits is one. 4 5

TEST FOR ‘0’ IN BIT 1 AND BIT 3 AND BIT 6 OF Rx

ANDI, Rx H'4A’ 2) 2 2
BCTR,0 LBL *Branch if all tested 2 3
bits are zero. 4 5

TEST FOR ‘1" INBIT 1 AND BIT 3 AND BIT 6 OF Rx

TMI, Rx H'4A’ 1) 2 3
BCTR,0 LBL *Branch if all tested 2 3
bits are one. 4 6

TEST FOR PATTERN IN Rx; e.g., x10xx01x
x = don’t care

I0RI, Rx H'99’ 2)
COMI, Rx H'DB’
BCTR,0 LBL *Branch if pattern

is true.

D INNN
N[WONN

1) Contents of register Rx kept
2) Contents of register Rx lost

BYTE TESTING PROCEDURES

TEST FOR POSITIVE, NEGATIVE AND ZERO

All of the tests described below must be preceded by an
operation on Rx which updates the contents of the
condition register, e.g., by instructions such as LOAD, ADD,
AND, COMPARE, ROTATE, 1/0, etc.

CcC | OPERATION
Test for (Rx) =0 00 or 01 BCFR, 2
Test for (Rx) >0 01 BCTR, 1
Test for (Rx) = 0 00 BCTR, O
Test for (Rx) <0 10 BCTR, 2
Test for (Rx) <0 00 or 10 BCFR, 1

TESTS ON THE CONTENTS OF A REGISTER
BY USING COMPARE INSTRUCTIONS

Logical compare: (COM =1 in PSL)
Comparison is made between two 8-bit unsigned binary
numbers.

Arithmetic compare: (COM =0 in PSL)
Comparison is made between two 8-bit signed numbers.

After execution of the logic or arithmetic compare instruc-
tion, the condition register (CC) is set to a specific value
and tested as follows:

REGISTER-TO-REGISTER COMPARE

Instruction used:

COMZ Rx

RESULT cC TEST
(Ro) = (Rx) 00 or 01 BCFR, 2
(Ro) > (Rx) 01 BCTR, 1
(Ro) = (Rx) 00 BCTR, O
(Ro) <(Rx) 10 BCTR, 2
(Ro) < (Rx) 00 or 10 BCFR, 1

REGISTER TO CONSTANT OR MEMORY LOCATION

Instructions used:

COMI, Rx DATA

COMR, Rx RELATIVE LOCATION OF DATA
COMA, Rx LOCATION OF DATA

RESULT

V=VALUE CcC TEST
(Rx) =V 00 or 01 BCFR, 2
(Rx) >V 01 BCTR, 1
(Rx) =V 00 BCTR, 0
(Rx) <V 10 BCTR, 2
{(Rx) <V 00 or 10 BCFR, 1

Whenever a compare instruction is used, the IDC, OVF,
or C bits in the PSL are not affected.

SIGNETICS BIT AND BYTE TESTING PROCEDURES = AS51

TEST ON OVERFLOW (OVF in PSL)

The overflow bit is affected whenever arithmetic or rotate
instructions are executed.

The OVF bit is set during an addition whenever the two
operands have the same sign and the result has a different
sign. During a subtraction, the OVF bit is set when the
operands differ in sign and the result has a different sign
than the first operand.

Examples: (+A) + (+B) = (-C) OVF
(-A) + (-B) = (+C) OVF
(+A) - (-B) = (-C) OVF
(-A) - (+B) = (+C) OVF
Test: TPSL H'04" *OVF test
BCTR,0 LBL *Branch if OVF = set

The OVF bit is set during rotate instructions with WC = 1
whenever the sign changes from positive to negative. |f
WC = 0, then rotate instructions do not affect the OVF bit.

Example:
RRR, Rx *Rotate right
TPSL H‘04’ *Test OVF bit
BCTR,0 LBL *Branch if OVF = set

TEST ON CARRY (Cin PSL)

The carry bit is set to 1 by an add instruction that generates
a carry and a sub-instruction that does not generate
a borrow. ‘

Example:
ADDITION
LODI, Rx H'88"
ADDI, Rx H'99’

TPSL H'01" *Test carry

BCTR,0 LBL *Branch if carry
SUBTRACTION

LODI, Rx H'40’

SUBI, Rx H‘30’

TPSL H'01’ *Test borrow .
BCTR,0 LBL *Branch if no borrow

When a rotate instruction is executed with WC = 1, the
carry bit is also ‘affected. Refer to the Signetics 2650
Microprocessor manual for a description of this operation.

© N.V. Philips’ Gloeilampentabrieken

This information s turnished for guidance. and with no guarantees as to its accuracy or completeness: its publication conveys no licence under any patent or other right, nor
does the publisher assume liability for any consequence of its use. specifications and availability ot goods mentioned in it are subject to change without notice, it is not to be

reproduced 1n any way. in whole or in part. without the written consent of the publisher

P

GENERAL

DELAY
ROUTINES

ASH2

Sinotics

GENERAL DELAY ROUTINES | AC 59

SUMMARY

In microprocessing applications, delay times are often
required. A typical example is a delay time for a serial
Teletypewriter interface. While delay times can be generated
by counters, monostables, multivibrators, and other hard-
ware, it is often simpler and more economical to use a short
software routine.

This applications memo describes several ways of writing
software delay time routines for the Signetics 2650
microprocessor. Time restrictions and formulas for calcu-
lating the delay time are given for each routine.

DELAY ROUTINES

In general, a delay can be implemented by setting a counter
with a number N and decrementing this number by one
until it is zero. If decrementing the number takes one clock
period, then the total delay time is N clock periods.

In the 2650 microprocessor, the internal registers may be
used as counters. The most useful instructions for decre-
menting are the “Branch on Decrementing Register’” (BDRR
and BDRA) instructions, which also test the content of a
register for zero.

Figure 1 illustrates a flowchart of a delay routine. This
routine consists of a setup part and a count loop. The
count loop will be executed n times and the setup only
once. Hence, the delay time is:

g =ty + 0 "ty

It is possible to increase the delay time by increasing n or
by making t.; longer. The latter can be done by inserting a
fixed delay such as a No Operation (NOP) instruction in the
count loop.

DELAY ROUTINE FLOWCHART

SET-UP
toy [n CNTR l

|
|————+——— -

I FIXED DELAY }

ENTRY

COUNT LOOP

¢ FCNTR)- 11— cmn]
ct

FIGURE 1

2650 MICROPROCESSOR
APPLICATIONS MEMO

The program of the routine shown in Figure 1 is as follows:

LODI, Rx n Load n into 6 cp™
register Rx
LOOP NOP No operation; 6 cp
fixed delay
of 6 cp

BDRR, Rx LOOP Decrement Rx; 9cp
branch to loop
if the result is
not zero

*cp = clock periods

With one NOP, the delay time is: tq = (6 + 15-n) cp. Without
the NOP, the delay time is: tq = (6 + 9'n) cp. The maximum
delay time is obtained when Rx is loaded with zero, since
Rx will cycle through all the 256 possible states. When
Rx =RO0, the LODI, RO O instruction can be replaced by the
EORZ RO instruction, which saves one byte of code.

DELAY ROUTINE WITH FOUR REGISTERS

ENTRY

ng ——— > CNTRO
np ————» CNTR1

Ny ————> CNTR2

n3 —— > CNTR3

I (CNTRO) - 1 —» CNTRO

—

LOOP 0

il

YES

| (CNTR1) -1 —> CNTR1]

I

YES

r(CNTRZ) ~1—> CNTR2 l

Loor2 /

NO

YES

FCNTR3) - 1—=CNTR3]

EXIT

FIGURE 2

GENERAL DELAY ROUTINES = AS52

Another possible way of increasing the delay time is to
repeat the count loop of Figure 1 several times. This can be
done by repeating the instructions or by counting the repeti-
tions of the count loop in another register. For example,
this latter method can be expanded to include four internal
registers. A flowchart of a delay routine using this technique
is illustrated in Figure 2.

The number of times the processor executes the different
loops shown in Figure 2 are:

loop3 n3
loop2 ng+(ng— 1) 256
loop 1 nq{ + (n2 - 1) 266 + (n3 - 1) 2562

loop0 ng+(n;—1) 256+ (ny— 1) 2562 + (n3 — 1)
2563

Hence, the delay time of this routine is:

tg = [24+ {ng + ny + (nq = 1) 256+ np + (ny — 1)
(256 + 2562) + n3 + (n3 - 1) (256 + 2562 + 2563) }
9] cp

TABLE 1

(If Rx is loaded with a zero, then n = 256 in the formula):

Table 1 shows six different delay routine programs along
with specifications for each program. The delay time for
these routines can be computed from the following
equations.

Routine Delay Time
a ty = (6 +9ng) cp
b ty = (6 + 15:'ng) cp
c tg = (2310 + 9:ng) cp

d tg={ 12+ [ng+ny + (ny - 1) 256] 9} cp

tg={ 18+ [ng+nq + (ng — 1) 256+ ny +
(ny - 1) (2562 + 256)] 9 } cp

tg={24+ [ng+nq +(ny - 1) 256+ ny +
(np - 1) (2562 + 256) + n3 + (n3 — 1)
(2563 + 2562 + 256)] 9} cp

(4]

-+

POSSIBLE DELAY TIME
ROUTINE (cp)

MIN* MAX

DELAY STEP
(cp)

NUMBER
OF BYTES

NUMBER

OF REGISTERS PROGRAM

a 15 2310 9

LODI, RO ng
LOOP BDRR, RO LOOP

u—ry
(6}

b 21 3846

(4]
-

LODI, RO ng
LOOP NOP
BDRR, RO LOOP

c 2319 4614 9

LODI, RO ng
LOP 1 BDRR, RO LOP 1
LOP2 BDRR, ROLOP 2

592.140 9

LODI, RO ng
LODI, R1 ny

LOOP BDRR, RO LOOP
BDRR, R1 LOOP

~151.6 x 106** 9

12 3 LODI, RO ng
LODI, R1ny
LODI, R2 n,

LOOP BDRR, RO LOOP
BDRR, R1 LOOP

BDRR, R2 LOOP

~38.8 x 109*** 9

16 4 LODI, RO ng
LODI, R1 nq
LODI, R2 ny
LODI, R3 n3

LOOP. BDRR, RO LOOP
BDRR, R1 LOOP
BDRR, R2 LOOP

BDRR, R3 LOOP

* ¢p = clock period. For 1MHz clock 1 cp = 1us.
** For 1MHz clock this is about 2.5 minutes.
*** Eor 1TMHz clock this is about 10.46 hours.

© N.V. Philips’ Gloeilampenfabrieken

This information is turnished for guidance. and with no

reproduced in any way, in whole or in part, without the written consent of the publisher

c for guarantees as to its accuracy or completeness; its publication conveys no licence under any patent or other right, nor
does the publisher assume liability for any consequence of its use: specifications and availabilit A . g

y of goods mentioned in it are subject to change without notice; it is not to be

AN S A= a

BINARY ARITHMETIC

Ei!ll‘“!til:E BINARY ARITHMETIC ROUTINES A353

2650 MICROPROCESSOR
APPLICATIONS MEMO

INTRODUCTION HARDWARE AFFECTED
Binary arithmetic routines, like addition, subtraction, multi-

plication, and division, are often used in microprocessor- RO | R1 R2 | R3 | R1" | R2" | R3
based systems. This applications memo provides several REGISTERS X X

suggested examples for processing binary arithmetic routines

on the 2650 microprocessor. These examples include: o F 1l SP

® SIGNED BINARY ADDITION/SUBTRACTION v
Two-byte operands giving a two-byte result.

e UNSIGNED BINARY MULTIPLICATION pSL CC | IDC| RS | WC | OVF COM| C
One-byte operands giving a two-byte result. X X X X X
Two-byte operands giving a four-byte result.

® SIGNED BINARY MULTIPLICATION

RAM REQUIRED (BYTES): 6

One-byte operands giving a two-byte result. | DAV RERUIRERABEIESS_ D ot o —
Two-byte operands giving a four-byte result.

e BINARY DIVISION — UNSIGNED AND SIGNED ROM REQUIRED (BYTES): 45
Two-byte dividend and quotient with one-byte divisor

. : Variable
and remainder. EXECUTION TIME: _____Variable
o S MAXIMUM SUBROUTINE
In these examples, emphasis is placed on minimizing NESTING LEVELS: None
program memory requirements rather than on processing | T TTTTTTTTTTT
speed. The different branch instructions and the indexing ASSEMBLER/COMPILER USED: PIPHASM

features of the Signetics 2650 proved useful in minimizing
memory requirements.

(OPR1, OPR1 ¢ 1) +/ - (OPR2, OPR2 + 1)
-+ RSLT, RSLT + 1

Enter Subroutine ADSB
Operation
tialize PS
1on:
set carr

YES, SUBTRACTION

1. BINARY ADDITION/SUBTRACTION FOR

TWO-BYTE SIGNED INTEGERS NO, ADDITION
FUNCTION:

Performs the addition or subtraction of two 2-byte signed
L

integers giving a two-byte result.

o —_—
(OPR1, OPR1 + 1) +/- (OPR2, OPR2 + 1)

LSbyte OPRT =R0

(RO} + LS byte OPR2 + carry (ROJ - LS byte OPR2 - horrow
= R0, carry R

> RO, borrow
- J
(RO} = LSbyte RSLT (RO) » LS byte RSLT

MS byte OPR1 = RO

PARAMETERS:

Input: OPR1, OPR1 + 1 contains augend/subtrahend
OPR2, OPR2 + 1 contains addend/minuend
COM-flag in PSL indicates addition/subtraction:
COM =0 addition
COM =1 subtraction

MS byte OPR1 = RO

(RO) ~ MS byte OPR2 - horrow
» RO, borrow

(RO) » MSbyte RSLT

(RO} + MS byte OPR2 + carry

Output: RSLT, RSLT + 1 contains sum/difference.
The condition code CC is set to the proper
value of the two byte result.

OPR1, OPR2 and RSLT are MS-bytes.
SPECIAL REQUIREMENTS

None

Refer to Figures 1.1 and 1.2 for flowchart and program
listing. FIGURE 1-1 Flowchart for Double Precision Addition/Subtraction
2

SIGNETICS BINARY ARITHMETIC ROUTINES

m ASH3

OO~ O N W N

8509
#5642
8544
#586
#5048
#5484
#5680
#518
#513
#515
517
#514
#510
8528
#522
#524
#527
#528
8524
#52¢

(11T
g1
#esz
8603
#8588
#p4p
gage
#eez
#881
4888
#83
#0880

8568

8584

8517

#522

#52¢

#52D
#52F
#9531

78

85 82

BS #2

18 of

IER)

8D 45 2D
8D 63 2F
D 65 31
i} VA

1B #B

ab 45 20
AD &5 2F
£h 65 31
5% 75

98 88

8c #5 32
14

75 88

17 48

17

* PD768816

FHHI I I
+ BINARY DOUBLE PRECISION ADDITION/SUBTRACTION
PR I I I H T H
+ OPERATION:

+ (OPR1+OPR1+1)+/-(OPRZ:OPRZ+1)--)RSLT)RSLT+1

+ OPR1,OPRZ:RSLT ARE MOST SIG BYTES

COM IN PSL IS USED AS ADD/SUB FLAG

+ COM=§ IS5 ADDi COM=1 IS SUBTRACT

+ AFTER ADD/SUB THE CC,OVF.AND C BITS IN PSL

+ ARE VALID FOR THE RESULT

]

% DEFINITION OF SYMBOLS
]

Ré EGQY # PROCESSOR REGISTERS
Rt EBU 1
Rz EQU [4
R3 EQU 3
CC1 EQU H'ed’ PSL: HSB OF CONDITION CODE
cCe EQU ' 4f? LSB OF CONDITION CODE
WC EQU H'ég’ 1=N1TH:8=NITHOUT CARRY
con Equ Héz’ 1=LOGICAL8=ARITH COMP
L EQU H'81’ CARRY/BORROW
1 B § BRANCH COND: ZEROD
UN EQU 3 UNCONDITIONAL
N EQU 8 ALL BITS ARE 1
*
ORG H' 508 START OF SUBROUTINE
L
ADSB PPSL NC+C ARITH WITH CARRYISET CARRY
LODIRY 2 LOAD INDEX REGISTER
TPSL COM
BCTR:ON LPSB BRANCH IF SUBTRACTION
cpsL € ADDITION:CLEAR CARRY

LPAD LODA:R# OPR1+R1:- BYTE OF FIRST OPERAND TO RS
ADDA(RS OPRZ:R1 ADD BYTE OF SECOND OPERAND
STRA:RE RSLT:R1 STORE RESULT
BRNR:R1 LPAD BRANCH IF NOT DONE
BCTR.UN TEST

LPSB LODAR® OPR1:+R1:- BYTE OF FIRST OPERAND TO R®
SUBA:R® OPRZ:)R1 SUB BYTE OF SECOND OPERAND
STRA:R® RSLT.Rt STORE RESULT
BRNR:R1 LPSB BRANCH IF NOT DONE

TEST BCFR:Z RTRN RETURN IF MS BYTE NOT ZERD
LODA:RS RSLT+{

RETC.Z RETURN IF LS BYTE ALSD ZER®
cPsL CCt SET CC. TO #1 (POSITIVE)
PPSL CC
RTRN RETC.UN
]
OPR1 RES 2 LOCATION OF: FIRST OPERAND
0OPRZ RES 2 SECOND OPERAND
RSLT RES [4 RESULT
END

FIGURE 1-2

SIGNETICS BINARY ARITHMETIC ROUTINES = ASb53

2. BINARY MULTIPLICATION FOR ONE-BYTE
UNSIGNED INTEGERS

FUNCTION:

One byte by one byte multiplication for unsigned integers,
giving a two-byte result.
(OPR1) X (OPR2)—» RSLT, RSLT + 1

PARAMETERS:

Input OPR1 contains multiplier
OPR2 contains multiplicand

Output: RSLT contains high-order product-byte.

RSLT + 1 contains low-order product-byte.

SPECIAL REQUIREMENTS:
None

Refer to Figures 2.1 and 2.2 for flowchart and program
listing.

HARDWARE AFFECTED
RO | R1 | R2 [R3| R1'| R2'| R3
REGISTERS
X X X X
F | n | sp
PSU
cc| Ibc| RS | wc|OVvF|com| c
PSL
X X X X
RAM REQUIRED (BYTES): __4
ROM REQUIRED (BYTES): 29
EXECUTION TIME: ___ _ _ Variable ____________
MAXIMUM SUBROUTINE
NESTING LEVELS: | None
ASSEMBLER/COMPILER USED:_ PIPHASM_________

Vinter Subroutine MULT
Operation:
MOLT (OPR2) X (OPR1)—RSLT, RSLT +1
Load R1, R2
with OPR1, OPR2

wpvu|

Initialize PSL:
® operations with carry

Clear RO
load loopcounter R3 with 8

———l Loor

l Clear carry I

L(RO) +(R2) + carry — RO I

L

SHIFTr

Rotate RO right:
carry —» MSB of RO
LSB of RO— carry

|

Rotate R1right:
carry »MSB of R1
LSB of R1 - mcarry

l

Decrease loopcounter:
(R3) -1—=R3

No

YES

Store RO, R1
in RSLT, RSLT +1

RETURN

FIGURE 2-1 Flowchart for Unsigned Multiplication

(One-Byte Operands; Two-Byte Result)

SIGNETICS BINARY ARITHMETIC ROUTINES = AS53

0O oUW N

#6098
8663
(1)
#648
#6689
goaB
868D
Bo8F
#oi1
#612
#613
#o14
#o16
#419
#61C

8088
ged1
g2
#6983
#8681
(1174
#6843
9803
#o08
fas2
fage
#8801
#8662
#6888
#9861
f84d
foge
gasz

8568
#5682
#5604

fobg

(131

#6808

goi2

an 85 a8
gt 85 82
17 88

8

47 98
B8

F5 81

8 8

82

b1

St

FB 75

CC 85 84
£h 85 84
17

t PD768638 i
HEFHH I I P R R 3 3 1
+ BINARY MULTIPLICATION FOR 2 UNSIGNED INTEGERS
HAH P H T I I I R I L 2 2 143
)
* MULTIPLIER IS IN OPR1
¥ MULTIPLICAND IS IN OPRZ
1 RESULT WILL BE STORED IN RSLT.RSLT+1 (RSLT = MS BYTE)
3
]
3
t
SYMBOL DEFINITIONS
R EQY 8
Rt Eay 1
R2 EQY 2
R3 EQy 3
R4 EQu 1
RS 21 2
Ré Eqy 3
UN EQu 3 UNCONDITIONAL BRANCHING
N 2 #
LT EQu 2
Z EQu #
P Equ 1
N EQu 2
W 2 8
C EQU 1
F EQY H'48’
OVF EQu 4
con tay 2
]
+ R/W MEMORY
]
ORC H'SHP’
OPR1 RES 2
0PR2 RES 2
RSLY RES 4
3
#
+
ORG H'688’
MULT LoDA:RI OPR! GET OPERAND IN R1
LODAIRZ OPR2 GET OPERAND IN RZ
HPYY PPSL NC ARITH
EORZ Ré CLEAR RE
LODI.R3 8 LOAD LOOP COUNTER R3
LooP CPSL € CLEAR CARRY
THI.RL H'8D?
BCFR:ON SHFT SKIP ADDITION IF LSB Ri=8
ADDZ R2 ADD MULTIPLICAND TO PARTIAL PROD
SHFT RRR:R8 ROTATE PARTIAL PROD AND MULTIPLIER
RRR:R1
BDRR:R3 LOOP BRANCH TO LOOP IF NOT READY
STRAWR® RSLT SAVE RESULT IN RESULT AREA
STRA:R1 RSLT+1 SAVE RESULT IN RESULT AREA
RETCUN RETURN TO MAIN PROGRAM

FIGURE 2-2

SIGNETICS BINARY ARITHMETIC ROUTINES = AS53

3. BINARY MULTIPLICATION FOR TWO-BYTE
UNSIGNED INTEGERS

FUNCTION:

Two byte by two byte multiplication for unsigned integers,

giving a four byte result.

(OPR2, OPR2 + 1) X (OPR1, OPR1 + 1) ———»
RSLT, RSLT + 1, RSLT +2, RSLT +3

PARAMETERS:

Input: (OPR1, OPR1 + 1) contains multiplier
(OPR2, OPR2 + 1) contains multiplicand

Output: RSLT, RSLT + 1, RSLT + 2, RSLT + 3 con-
tains product.
OPR1, OPR2, and RSLT are most-significant
bytes.

SPECIAL REQUIREMENTS:
None

Refer to Figures 3.1 and 3.2 for flowchart and program
listing.

HARDWARE AFFECTED
RO| R1| R2| R3| R1| R2'| R3
REGISTERS
X X X
F n sP
PSU
cc| Ibc| RS | wc| ovF|com| c
PSL
X X X X
RAM REQUIRED (BYTES): __ 8
ROM REQUIRED (BYTES): &7
EXECUTION TIME: _____Variable
MAXIMUM SUBROUTINE
NESTING LEVELS: | None
ASSEMBLER/COMPILER USED: PIPHASM

Enter Subroutine SMPY
SMPY Operation:

Initialize PSL
® operation with carry
® clear result area

L Load R3 with 16 I
——>———'Y L000

Rotate Multiplier right
by 1 bit into carry

carry = 17
Loc1

(OPR2) X (OPR1)—>RSLT

Add Multiplicand
to result

Rotate the
result to right
by 1 bit

|

Decrement Loop Counter
(R3) -1 —»(R3)

RETURN

FIGURE 3-1 Flowchart for Unsigned Multiplication

(Two-Byte Operands; Four-Byte Result)

SIGNETICS BINARY ARITHMETIC ROUTINES = AS53

58 + PD766631 ¥
59 FEHHH R R R I R A R R R H 1 HH F H R H IR A
&8 + BINARY MULTIPLICATION FOR 2 TNO-BYTE INTEGERS

81 HHE IR R R R R R R IR R AR R R R R A A H 1 R HE R 413 1
§2 1

43 + MULTIPLIER IS IN OPR1 » OPRI+1

o4 + MULTIPLICAND 1S IN OPRZ »OPRZ+1

65 + RESULT WILL BE IN RSLY RSLT+1 »RSLT+2 »RSLT+3

b6 ORG H'798

67 1

68 8798 8798 77 88 SHPY PPSL NC SET MODE

49 8792 28 EORZ Ré

18 #7193 C 85 84 STRA:R# RSLT CLEAR RESULT

7 8796 CC 85 85 STRA+RE RSLT+L CLEAR RESULT +t

12 #7199 a7 18 LODI+R3 14 LOAD COUNT

73 #798 8798 @5 FE L000 LODIRL -2 T0 GET 254

74 #4790 75 81 CPSL € CLEAR CARRY

75 879F 879F 8D 64 62 LOCO LODA:R8 OPR1-256+2,R1 FOR INDEXING INTO OPRI

76 8782 58 RRR:RE ROTATE RIGHT WITH €

17 #7143 CD 44 #2 STRA'R® OPR1-254+2:R1

78 8786 b 77 BIRR:Rt LOCO ROTATE ZND TIME

19 + THIS ROTATES MWULTIPLIER BY { BIT TD GET THE LSB
8 + INTO CARRY

81 8748 28 EORZ Ré CLEAR R#

82 8749 Dé RRL:RE GET CARRY INTOD LSB

83 #74R Fg 82 BDRR:R# LOC1

84 #74C iB 8D BCTR:UN LOCA

85 +

86 #7AE #7AE @5 82 LOC1 LODIsR1 2 GET INDEX

87 @788 6788 @D 45 83 LoCz LODA:R® RSLT-1.R1 ADD MULTIPLICAND TO PRODUCT
88 8783 3D 45 81 ADDA:RE OPRZ-1:R1

89 @786 CD 45 63 STRA'R® RSLT-1,Rt

9% 8789 F9 75 BDRR:R1 LOC2 FINISH THE ADD

91 1

92 1

93 47BB @7BB 45 FC LOC4 LODI:RT -4 ROTATE THE PRODUCT TO RIGHT
94 678D 67BD @D 44 68 LOCS LODA:RE RSLT-256+4,R1

95 8708 58 RRR:RE ROTATE RESULT

9% 8701 CD 44 88 STRA'R8 RSLT-256+4:R1

97 #7C4 B} 77 BIRR:R1 LDCS

98 #7C FB 53 BDRR:R3 LODO FINISH THE LOOP

99 #7C8 17 RETC,UN

FIGURE 3-2

SIGNETICS BINARY ARITHMETIC ROUTINES = AS53

4. BINARY MULTIPLICATION FOR ONE-BYTE
SIGNED INTEGERS

FUNCTION:

One byte by one byte multiplication for signed integers
giving a two-byte result.

(OPR1) X (OPR2)—» RSLT, RSLT + 1

The Booth algorithm is used (see Figure 4.1).

PARAMETERS:

Input: OPR1 contains multiplier
OPR2 contains multiplicand

Output: RSLT contains high-order product byte.
RSLT + 1 contains low-order product byte.

SPECIAL REQUIREMENTS:
None

Refer to Figures 4.1 and 4.2 for flowcharts and to Figure
4.3 for program listing.

RAM REQUIRED (BYTES): 4

ROM REQUIRED (BYTES): 51

EXECUTION TIME: __ Variable
MAXIMUM SUBROUTINE
NESTING LEVELS: None

ASSEMBLER/COMPILER USED: PIPHASM

HARDWARE AFFECTED
RO R1 R2 R3 R1’ R2’ | R3
REGISTERS

X X X X

F 1] SP
PSU

CcC IDC| RS WC | OVF|CcomM| C
PSL

X X X X

V&mer BOOTH — MULTIPLICATION — ROUTINE
l clear PRODUCT I
clear FLAG

LSB of MULTIPLIER
= FLAG (previous LSB)?

LSB of MULTIPLIER = 0?

NO
Subtract MULTIPLICAND Add MULTIPLICAND
from PRODUCT with to PRODUCT with
MSB’s aligned MSB's aligned
Store LSB of MULTIPLIER
in FLAG

l

| Shift MULTIPLIER right I

one position

I

Shift PRODUCT right
one position, the MSB
remaining the same

vES

RETURN

Enter Subroutine MPYS
Operation:
MPYS (OPR2) X (OPR1)—»RSLT, RSLT + 1

OPR1—»R1

8 —»R3 (= loopcounter)

—h———*‘ MOOP

0-—*>WC in PSL
(operations without carry)

MOCO
NO
YES
r (RO) - (R2)—=R0O] [(RO) + (R2)—>R0 I
I 1—=FLAG] L 0—>FLAG I
I__ L
MOC1

1—> carry
1—>WC in PSL
(operations with carry)

[0—>carry 1
Moc2 -

Shift RO, R1 right
with carry into MSB RO

YES
RO »RSLT
R1-—»RSLT +1

RETURN

FIGURE 4-1 Flowchart of Booth Algorithm
Multiplicand X Multiplier — Product

8

FIGURE 4-2 Flowchart for Signed Multiplication Using Booth
Algorithm (One-Byte Operands; Two-Byte Result)

SIGNETICS BINARY ARITHMETIC ROUTINES = AS53

168
181
162
163
164
165
196
187
198
169
11
it
12
113
114
115
116
17
118
119
128
121
122
123
124
125
126
127
128
129
138
131
132
133
134
135
136
137

#848
geaz
#8495
#6848
#8048
#68B
#8640
f#8oF
#8i1
#813
8815
8816
8818
#81A
#81c
#81E
#81F
1731
#823
#824
#826
#6828
8829
#828

#82F
#832

#809

#88B

#81A

#821

#828

14 4

8D 85 88
ot 85 82
87 88
28

75 88
FS 81

98 89

B4 48

18 8C

Az

76 48

1B 87

B4 4¢

98 83
82

T4 48

17 89
b8

1A 82
75 81

58

51

FB 5F

iC 85 #4
D #5 85
17

+ PR768832

PP NN

+ BINARY MULTIPLICATION USING BOOTH-ALGORITHN

+ FOR 2 ONE-BYTE SIGNED [INTEGERS.

M B
FIRST OPERAND IS IN OPRI

L]

+ SECOND OPERAND IS IN OPRZ (OPR2) # H'80’

+ PRODUCT WILL BE IN RSLT.RSLI+1

3
ORG H'GHH’

NPYS CPSU F CLEAR FLAG IN PSU
LODA.RT OPRI GET 1ST OPERAND
LODA:RZ OPRZ GET ZND OPERAND
LODI.R3 8 LOAD LOOP COUNTER R3
EORZ Ré CLEAR R#

HoOP CPSL WC CLEAR WC IN PSL
THI:R1 H'81
BCFR:ON MOCH LSB OF Rl SET?
TPSU F YES
BCTR.ON MOCH FLAG =1?
SuBZ Rz NO:SUBTRACT WITHOUT BORROW
PPSU F SET FLAG
BCTR:UN MOCI BRANCH TO DOUBLE SHIFT

HocH TPSU F LSB OF R1 WAS ¢
BCFR.ON MOCH FLAG =1?
ADDZ R2 YESADD WITHOUT CARRY
CPSU F CLEAR FLAG

HOCi PPSL NC+C SET C AND NC
10RZ Ré
BCTR:N MOCZ HSB OF RE SET?
CPSL € NO+CLEAR CARRY

Hoc2 RRRR§ SHIFT R# R1 RIGHT
RRR:R1 HSB OF RE 1S SANE
BDRR:R3 MOOP BRANCH TO LODP IF NOT READY
STRAWRE RSLT STORE RESULT
STRA:R1 RSLTH
RETC,UN EXIT SUBROUTINE MPYS

FIGURE 4-3

SIGNETICS BINARY ARITHMETIC ROUTINES = AS53

5. BINARY MULTIPLICATION FOR TWO-BYTE
SIGNED INTEGERS

FUNCTION:

Two byte by two byte multiplication for signed integers
giving a four byte result.

(OPR1, OPR1 + 1) X (OPR2, OPR2 + 1)

— RSLT, RSLT+ 1, RSLT +2, RSLT + 3.

The Booth algorithm (Figure 4.1) is used.

PARAMETERS:

Input: OPR1, OPR1 + 1 contains multiplicand
OPR2, OPR2 + 1 contains multiplier

Output: RSLT, RSLT + 1, RSLT + 2, RSLT + 3 contains

product.
OPR1, OPR2, and RSLT are most-significant
bytes.

SPECIAL REQUIREMENTS

None

Refer to Figure 5.1 for flowchart and to Figure 5.2 for

program listing.

HARDWARE AFFECTED
RO | R1 | R2 | R3 [R1' | R2' | R®
REGISTERS
X X X X
F n | sp
PSU
cc | Ibc| RS | wc |ovF|com| c
PSL
X X X X
RAM REQUIRED (BYTES): __ 8
ROM REQUIRED (BYTES): 71
EXECUTION TIME: ______\ Variable
MAXIMUM SUBROUTINE
NESTING LEVELS:_____ None
ASSEMBLER/COMPILER USED: ___ PIPHASM_

10

Enter Subroutine SMPY
SSPY

SET OPERATION Operation:
WITH CARRY (OPRTOPR1+ 1) x (OPR2 OPR2 + 2)

] — RSLT,RSLT +1,RSLT +2, RSLT +3

0—>R2 (bit buffer)

0—=RSLT MS - bytes

0—RSLT +1 product
16—=R3 (loopcounter)

F NOOP

Rotate multiplier
OPR2, OPR2 + 1 right into carry

I

Rotate carry into
LSB of RO

YES (LSB multiplier = previous LSB)

No (LSB multiplier changed)

I invert LSB of R2 j

]
I

I LSB of R2— carry I

NO (1—0 transient)

LSBR2=1

YES (0—=1 transient)

Subtract multiplicand
(OPR1, OPR1 + 1) from
MS — bytes of product

(RSLT, RSLT + 1)

Add multiplicand to
MS - bytes of product

1

NOC 4 [[‘

Copy MSB of product
to carry

l

Rotate product right
into carry
(MSB remains equal)

|
I (R3) - —=R3 —I

RETURN

FIGURE 5-1 Flowchart for Signed Multiplication Using Booth
Algorithm (Two-Byte Operands; Four-Byte Result)

SIGNETICS BINARY ARITHMETIC ROUTINES = AS53

138 + PD768833
139 FRAHH AR R R R R R R F R AR AR AR R R R AR R 1R A HE R R R R R E R RS 41
146 + BINARY MULTIPLICATION FOR TWO BYTE SIGNED INTEGERS
141 FEH IR F I F IR M R I R R R R R R R R R R H R R 1 1 14 4 43330483
142 + WULTIPLICAND IS IN LOCATIONS OPR1,OPRi+1
143 4+ MULTIPLIER IS IN LOCATIONS OPRZ)DPRZ+1
144 +
145 # RESULT WILL BE STORED IN RSLT:RSLT+1,RSLT+2)RSLT+3
146 ¥
147 + AFTER MULTIPLICATION THE MULTIPLICAND IS UNCHANGED
148 3+ THE MULTIPLIER IS DESTROYED
149 + THE MULTIPLICAND MUST BE UNEQUAL H'BE#8’
156 FEHHIHEH AR R IR AR A R AR R R R R R R R R R H H R 1 1
151 0833 9833 77 #8 SSPY PPSL W ARITH AND ROTATE WITH €
152 9835 28 EORZ Ré CLEAR RS
153 #83% €2 STRZ R2 CLEAR RZ
154 §837 cC 85 M STRA+R# RSLY CLEAR Z MSBYTES OF PRODUCT
159 083A cC 85 85 STRA'R8 RSLT+1
156 683D 87 18 LODIR3 14 LOAD LOOP COUNTER R3
157 @83F @83F 45 FE NOOP LODI«RE -2 LOAD INDEX REG WITH 254
158 0541 @841 4D 44 64 NOC# LODA'RE OPRZ-256+2,R1 ROTATE MULTIPLIER
159 9844 58 RRR:RE INTO CARRY
166 #8435 CD &4 84 STRA'RE OPRZ-256+2:R1
161 9848 D9 77 BIRR:R1 NOCE BRANCH IF NOT DONE
162 6844 28 EORZ Ré CLEAR RS
163 98848 Dé RRL:RE ROTATE CARRY IN LSB OF Ré
164 #84C 22 EORZ RZ LSB OF R# BECOMES 1| FOR CHANGE
165 984D 18 19 BCTRyZ NOCH BRANCH IF NO CHANGE
166 @BAF 22 EORZ Rz INVERT LSB OF RZ
167 9858 c2 STRZ R2 RESTORE NEN R2
148 6851 o8 RRR R LSB OF RZ INTO CARRY DR BORROW
169 #8852 - 8 n LOBI,RL 2 LOAD INDEX
176 6854 @#854 @D 45 ¢4 NOCt LODA:RE RSLT:Ri.- LOAD BYTE OF RSLY IN R#
171 8857 Fé 81 THI«RZ i
172 #85% 18 85 BCTR:ON NOC2Z BRANCH TO SUBTRACT IF LSB Rz=1
173 #8358 3D 65 68 ADDA'RE OPR1.R1 ADD BYTE MPLCND TO RSLT
174 885t 1B 63 BCTR:UN NOC3
175 9848 @868 AD 45 88 NOCZ SUBA:RE OPR1.Rt SUB BYTE MPLCND FROM RSLT
176 8843 #8463 CD &5 #4 NOC3 STRA'R# RSLT:Ri RESTORE INTERMEDIATE RSLT
177 8846 59 4C BRNR:R1 NOC! BRANCH IF ADD SUBTRACT NOT READY
178 Y
179 0848 @848 @C 85 84 NOC4 LODA'R# RSLY
186 #84B Dé RRLRE
181 @84C a4 FC LODI+RE -4 LOAD INDEX
182 @BLE @BLE 4D 44 88 NOCS LODA'RE RSLT-256+4:R1 FETCH NS BYTE PRODUCT
183 #8871 b) RRR RS ROTATE RSLY:PROD+1 ETC TO RIGHT
184 @872 CD &4 88 STRA'RE RSLT-256+4:R1 KEEPING MSB SANE
185 #8735 e 77 BIRR:RL NOCS BRANCH IF NOT DONE
186 9877 FB 4 BDRR:R3 NOOP BRANCH IF LOOP NOT READY
187 #879 17 RETC,UN RETURN TO MAIN PROGRAM
188 END
FIGURE 5-2

11

SIGNETICS BINARY ARITHMETIC ROUTINES = AS53

6. BINARY DIVISION

A.UNSIGNED INTEGERS
TWO-BYTE DIVIDEND; ONE-BYTE DIVISOR

FUNCTION:

Division of a two byte dividend by a one byte divisor,

resulting in a two-byte quotient and a one-byte remainder.

(DVDN, DVDN + 1) DVDN, DVDN +1 (quoti.ent)
(DVSR) R1 (remainder)

PARAMETERS:

Input: DVDN, DVDN + 1 contains dividend
DVSR contains divisor
- DVDN is most-significant byte

Output: DVDN, DVDN + 1 contains quotient
R1 contains remainder
DVDN is most-significant byte.
Dividend is destroyed after execution of division.

SPECIAL REQUIREMENTS:
None

Refer to Figure 6.1 for flowchart and to Figure 6.2 for
program listing.

HARDWARE AFFECTED
RO | R1 | R2 | R3 | R1' | R2’ | R3’
REGISTERS
X X X X
F | n | sp
PSU
cc | ibc| Rs | wc [ovF [com | ¢
PSL
X X X X X X
RAM REQUIRED (BYTES): 3
ROM REQUIRED (BYTES): __ ° 4
EXECUTION TIME: _______Variable
MAXIMUM SUBROUTINE
NESTING LEVELS: ___ None
ASSEMBLER/COMPILER USED: __PIPHASM

Enter Subroutine DIVI
DIV

Initialize PSL:
® operations with carry

® logical comparison
® set OVF

RETURN

DI
BIVU l < enter subroutine DIVU
I 0—R1 |

17— R3 (loopcounter) Operation:

] (DVDN, DVDN + 1)
L Clear carry] (DVSR)

] DVDN, DVDN + 1 (quot.)
1 LOOP R1 (remainder)

Rotate R1 left:
(carry)—»LSB
(MSB) —carry

L (R1) - (DVSR)—»=R1

l Set carry

LOCO

Rotate DVDN, DVDN + 1 left:
(carry)-—»LSB of DVDN + 1
(MSB of DVDN) —»carry

L Clear OVF]

T

RETURN

12

FIGURE 6-1 Flowchart for Unsigned Division (Dividend or
Quotient: Two-Bytes; Divisor or Remainder: One-Byte)

SIGNETICS BINARY ARITHMETIC ROUTINES = AS53

O 0~ O~ W N

#5080
#542
8545

#5864
8588
#5404
#58C
858D
#58F
#511
#514
#516
#518
#518
#510
#51F
#522
#523
#526
#528
#524

asor
AN

pods
#881
#882
#8483
g1
8882
86483
#6883
gos1
8889
8882
#op
fo88
#6081
8862
#8488
ghse
1174

#5688

#5846

#56C

#516

#510
#51F

77 8t
oC 86 82
14

85 8¢
87 11

75 81

B

BS #1

18 #5

ED 66 82
1A 87

71 81

AD #¢6 82
78
86 82
6E 46 0
il

CE 66 8¢
W

FB 62

75 64

7
L

3

¥

+
]
¥
Ré
Rt
R2
R3
R
RS
Ré -
N
£
]
LT
z
(1]
P
N
WC
OVE
con

DIVI

BIVY

LooP

SUBT

LOCS
Loct

PD768846 *
P R R R R R I R
BINARY DIVISTONS FOR INTEGERS
IR R
4 DIVIDEND IS IN DVDN,DVDN+1 16 BITS

+ DIVISOR IS IN DVSR 8 BIIS

+ QUOTIENT WILL BE IN DVDN.DVDN+1 16 BITS

3 AFTER DIVISION, DIVIDEND WILL BE DESTROYED

+ R1 WILL HOLD REMAINDER

+ OVF=1 IMPLIES OVERFLOW

SYMBOL DEFINITIONS

EQu #

EQY |

EQu é

EQY 3

EQU |

EQu z

EQU 3

EQu 3 UNCONDITIONAL BRANCHING
EQU i

EQU]

EQu 2

EQU #

(11] #

EQU i

(1] 2

EQu 8

EQu 4

EQU 2

ORG H1588* UNSIGNED DIVISION SUBROUTINE
PPSL NC+OVF+COM ARITH ROTATE NITH CARRY
LODA:R® DVSR FETCH DIVISOR

RETC:Z RETURN WITH OVF =1 IF DVSR =#
LODIRY @ CLR Rl

LODIR3 17 LOAD LOOP COUNTER R3

CPsL C CLEAR CARRY

RRL:R1 ROTATE CARRY IN LSB OF Ri
TPSL X

BCTR:ON SUBT GO TO SUBTRACT IF CARRY =i
COMA:R1 DVSR

BCTR:LT LOCS IF R1<{DVSR:NO SUBTRACTION
PPSL € CLR BORRON

SUBART DVSR SUBTR DVSR FROM REMAINDER
PPSL € SET CARRY

LODIRZ 2 LOAD INBEY REGISTERR
LODA:RE DVDN.RZ.- ROTATE QUOTIENT BIT

RRL:RE DVDN,DVDN+{ AND MSB OF
STRA.R8 DVDN.R2 DVDN INTO CARRY

BRNR:R2 LOCH BRANCH IF ROTATE NOT READY
BDRR:R3 LOOP BRANCH IF DIVISION NOT READY
CPSL OvVF CLEAR OVF IN PSL

RETC UR RETURN TO HAIN PROGRAW

FIGURE 6-2

13

SIGNETICS BINARY ARITHMETIC ROUTINES = AS53

B. SIGNED INTEGERS
TWO-BYTE DIVIDEND; ONE-BYTE DIVISOR

FUNCTION:

Division of a two-byte dividend by a one-byte divisor,
resulting in a two-byte quotient and a one-byte remainder.
(DVDN, DVDN + 1) DVDN, DVDN + 1 (quotient)

(DVSR) R1 (remainder)
PARAMETERS:
Input: DVDN, DVDN + 1 contains dividend
DVSR contains divisor

DVDN is most-significant byte.

Output: DVDN, DVDN + 1 contains quotient
R1 contains remainder
DVDN is most-significant byte.
Dividend is destroyed after execution of division;
negative divisor becomes positive

SPECIAL REQUIREMENTS:
Software: Unsigned division subroutine

Refer to Figure 6.3 for flowchart and to Figure 6.4 for
program listing.

HARDWARE AFFECTED
RO | R1 | R2 | R3[| R1"| R2"| R3
REGISTERS
X X X X
F i sP
PSU
cc | ibc| RS | wc | ovF|com| C
PSL
X X X X X
RAM REQUIRED (BYTES): 4
ROM REQUIRED (BYTES): L
EXECUTION TIME: ____ __ _ Variable . ________
MAXIMUM SUBROUTINE
NESTING LEVELS: -
ASSEMBLER/COMPILER USED: _PIPHASM

DIVS

Initialize PSL: Operation:
® operations with carry
® logical comparison (DVDN, DVDN + 1)
® set OVF; clear borrow (DVSR)
® clear STATUS DVDN, DVDN + 1 (quot.)
- .
R1 (remainder)
RETURN
ole|8
status | B| 5|2 |52
CODING [Z|2|a|B |8
2|2+ 3| &
T|T|(W| T -
+ |+ loof+ |+
+|-la0f-|+
- | +|go| -1 -
L Complement (DVSR) J - |eo + | -

]
I

[H'40'—>STATUS]

DIVO

(DVDN,

DVDN + 1) YES

(STATUS)=

[Complement (DVDN, DVDN + 1) I

I Complement R1 I
I (STATUS) + H'80‘7+STATUS] (remainder)

RETURN

l UNSIGNED DIVIDE 1

Complement (DVDN, DVDN + 1)
(quotient)

RETURN

RETURN

14

FIGURE 6-3 Flowchart for Signed Division (Dividend & Quotient:
2 Bytes; Divisor & Remainder: 1 Byte)

SIGNETICS BINARY ARITHMETIC ROUTINES = AS53

59 + PO768841
b8 HHI RTINS
61 1 SIGNED DIVISION
b2 I R A R R R R
63 +
64 + NEGATIVE DIVIDEND AND OR DIVISOR ARE COMPLEMENTED
65 + PRIOR TO EXECUTION OF DIVISION
bb 1
67 + SIGNS ARE CODED IN STATUS:
68 + STATUS CODING:DVDN DVSR STAT QUOT RMDR
9 ¥ + + 8 o+ 4
78 1 LA T SR
i + - T
12 1 - - o+ -
73 + DIVIDEND MUST BE UNEQUAL H'88B6' (NO CORRECT OVF)
74 + NEGATIVE SIGN OF DIVISOR IS LOST AFTER EXECUTION.
75 852D @520 77 8D DIVS PRSL NC+OVF+C ARITH ROTATE WITH CARRY ETC
76 #52F 28 EORZ Ré
17 8538 1 STRZ R1 CLEAR R1
78 8531 oE 86 82 LODA:RZ DVSR FETCH DIVISOR IN R2
79 8534 14 RETC,Z RETURN WITH OVF SET IF DVSR= 6
88 #9535 19 86 BCTR:P DIVE BRANCH IF DIVISOR >8
81 8337 A2 SUBZ RZ TAKE 2S COMPLEMENT OF DVSR
82 #538 £C 86 82 STRA)RB DVSR RESTORE DIVISOR
83 #53B 85 48 LODI+R1 H'4@? LOAD STATUS IN Ri
84 @530 #53D 6C 86 08 DIVé LODA:RZ DVDN FETCH MS BYTE OF DIVIDEND
85 #5449 9% 84 BCFR:N DIVI BRANCH IF DIVIDEND NOT<(#
86 8542 3B 18 BSTR/UN CHPL TAKE 25 COMPLENENT OF DIVIDEND
87 8544 45 88 ADDI,RL H'B8’ UPDATE STATUS
88 #5406 8546 CD 86 83 DIV STRA:R1 STAT SAVE STATUS
89 8549 3F 85 86 BSTA:UN DIVU CALL UNSIGNED DIVISION
9§ 854 oF 86 83 LODAIR3 STAT LOAD STATUS IN R3
91 #54F 14 RETC:Z RETURN IF BOTH DVDN AND DVSR NOTCH
92 8556 19 87 BCTR:P DIVZ BRANCH IF DVDN WAS NOT (B AND DVSR{(#®
93 #5932 17 8 PPSL € CLEAR BORROW
94 #554 28 EORZ Ré CLEAR R#
95 #8555 Al SUBZ R1 TAKE 2 § COMPLEMENT OF REMAINDER
96 8536 £1 STRZ Ri : RESTORE REMAINBER IN Ri
97 8537 D3 RRL:R3 SHIFT R3 LEFT
98 #5958 16 RETC.N RETURN IF BOTH DVDN.DVSR{#
99 8559 #559 3B #1 DIv2 BSTR/UN CHPL TAKES 25 COMPL. OF QUOTIENT
188 8558 17 RETC UN RETURN TO MAINPROGRAM
181 +
182 *
183 + SUBROUTINE TO TAKE 25 COMPL
164 + OF (DVDN,DVDN+1}
185 *
186 #55C #55C 77 81 CHPL PPSL e CLEAR BORRON
167 855t 87 82 LODI:R3 2 LOAD INDEX REG
168 8548 8568 128 CHP8 EORZ Ré CLR R
189 8541 AF 44 88 SUBA:RE DVDN:R3:- COMPLEMENT BYTE
118 8564 CF b6 88 STRA:RS DVDN.R3 RESTORE RESULT
111 8547 B 77 BRNR:R3 CMPH BRANCH IF NOT DONE
11z 8549 17 RETCUN
13 ORG W' 688"
114 #6086 DVDN RES 2 DIVIDEND AND QUOTIENT
115 #6682 DVSR RES 1 DIVISOR
116 #6863 STAT RES 1 STATUS REG
117 END
FIGURE 6-4

15

Signetics 2650 Microprocessor application memos currently available:

AS50
AS51
ASb52
AS54
SP50
SP51

Serial Input/Output

Bit and Byte Testing Procedures

General Delay Routines

Conversion Routines

2650 Evaluation Printed Circuit Board Level System (PC1001)
2650 Demo Systems

Support Software for use with the NCSS Timesharing System
Simulator, Version 1.2

Support Software for use with the Genera! Electric Mark 11! Timesharing
System

Absolute Object Format (Revision 1)
2650 Initialization
Low Cost Clock Generator Circuits

© N.V. Philips’ Gloeilampentabrieken

This information is furnished for guidance. and with no guarantees as to its accuracy or completeness; its publication conveys no licence under any patent or other right, nor
does the publisher assume liability for any consequence of its use: specifications and availability of goods mentioned in it are subject to change without notice; it is not to be
reproduced in any way, in whole or in part, without the written consent of the publisher

a4.76

Q200 ENQ D201

CONVERSION ROUTINES.AS54

Em“ntmg CONVERSION ROUTINES AS 5 4

2650 MICROPROCESSOR
APPLICATIONS MEMO

INTRODUCTION

RAM REQUIRED (BYTES): 1V
Conversion routines like binary to BCD, BCD to binary, and
BCD to ASCII are often used in microprocessor based ROM REQUIRED (BYTES): 28
systems. This applications memo describes routines for
converting: EXECUTION TIME: _____Variable ____________

® Eight-bit unsigned binary to BCD. MAXIMUM SUBROUTINE
NESTING LEVELS: 0

® Sixteen-bit signed binary toBCOD. [T T T e e

® Signed BCD to binary conversion 1 (using an addition ASSEMBLER/COMPILER USED: PIPHASM
method). L PlrRASM

® Signed BCD to binary conversion 2 (using a multi-
plication method).
® Signed BCD to ASCII
° ASC” to BCD Enter CONV Subroutine
® Hexadecimal to ASCII
® ASCI| to Hexadecimal V
Operation:
1. EIGHT-BIT UNSIGNED BINARY-TO-BCD B S atioms with carry P A
CONVERSION ¢ Logea compar
FUNCTION: !
. . I (BINN) binary number — R0 I
Converts an unsigned binary number to a BCD number T
(3 digits)'c f (RO)—=R1]
(BINN)—20¥ESON R, R1
A multiplication method is used. r — Msfbmofm l
PARAMETERS: !
[Decimal Adjust (R1) l
Input: BINN contains the binary number (8 bits T
unsigned. I Clear LS 4 bits of RO |

Output: Registers RO, R1 contain the BCD result
(3 BCD digits).
RO is the most-significant byte.

MS 4 bits
(RO) zero

The maximum BCD result is 256 decimal.
No
. Y
Refer to figures 1.1 and 1.2 for flowchart and program l(RO) Gimary Numbor_H10" - >ROl
listing. . I
(R1) + BCD 16 —R1 I
HARDWARE AFFECTED l
I Decimal Adjust R1 I
RO R1 R2 R3 R1’ R2’ R3
REGISTERS !
X X I Add Carry from R1 to RO |
bsU F " sP :EX:”
CC IDC| RS WC | OVF|com| C
PSL

X X X X X X FIGURE 1-1 Flowchart for Eight-Bit Unsigned Rinary-to-BCD
Conversion (Multiplication Method)

SIGNETICS CONVERSION ROUTINES

= AS5H4

WO O U W

O L LI N PN PN D P PRI P PN P bt ot b ot o Pt ot Pt b e
N D00~ U WM &8 000 O U WK - -0

#5408
#5482
#5484
8547
#5688
#58A
#56C

W2 W W W LD W
OO~ e

856D

e
™N

#56F
8511
#513
#515
#517
#518
fiia

[i T
|0 O dOU =W

#51C

(24
-

L)
g8l
8688
g2
8681
8083
1] 74

gods

8588

#58F

#51C

17 84
75 81

ac 86 bp
1

45 #F
85 bb

9

M Fo

E4 16
1a 89
A4 oF
85 7B
9

84 06
1B 73

o

* PD7688548

FHHH PRI R R R R R A 4
+ 8 BIT UNSIGNED BINARY TO BCD CONVERSION
FHHHH IR R R R R
]

#+THIS ROUTINE CONVERTS AN 8 BIT UNSIGNED BINARY
#NUMBER INTO AN UNSIGNED BCD NUMBER.

]

$BINARY NUMBER IS IN BINN.

#BCD NUMBER (RFTER CONVERSION) IS IN Ré:R1.

+ HUNDREDS IN R§

+ TENS:UNITS IN R1.

]

#DEFINITIONS OF SYMBOLS:

]

Ré EQU § PROCESSOR-REGISTERS
Rl EQU 1
W EQU H'@8? PSL: 1=WITHy B=MITHOUT CARRY
CoM EQU H'az2’ 1=LOGICy #=ARITH.COMPARE
£ EQu H'81? CARRY : BORRON
N EQU 3 BRANCH COND.: UNCONDITIONAL
LT EQU 2 LESS THAN
]
*
ORG R 664°
]
BINN RES 1 BINARY NUMBER.

4

ORG H' 588 START ADDRESS OF ROUTINE.
]

i INITIALISATION:

CONv PPSL NC+COM WITH CARRY:LOGICAL COMPARE
pSL ¢ CLEAR CARRY FLAG IN PSL.
LODA/RS BINN 8 BIT BIN.NUMBER -) R#.
STRZ Rl {R8) -) Ri.

ANDI/R1 H'8F’ CLEAR MS 4 BITS BIN. NUMBER
ADDI:R1 H'b¢! PREPARE R1 FOR DECIMAL ADJUST.
DAR+R1

]
ANDI:RE H'F®’ CLEAR LS & BITS.

3

LOOP COMI.R@ H'18’
BCTR:LT EXIT IF MS & BITS ZERO THEN RETRUN.
SUBI:RB H'18'-1 SUBTRACT 1 FROM MS & BITS
ADDI:Rt H'167+H'66-1 ADD BCD 16 AND PREPARE

DAR:R1 FOR DECIMAL ADJUST.
ADDI:RO & ADD CARRY TO WS BCD DIGIT
BCTR:UN LOOP BRANCH AGRIN

1

EXIT HALT END OF CONVERSION,
END

FIGURE 1-2 Program Listing for Eight-Bit Unsigned Binary-to-BCD Conversion

SIGNETICS CONVERSION ROUTINES = AS54

2. SIXTEEN-BIT SIGNED BINARY-TO-BCD
CONVERSION

FUNCTION:

Converts a signed 16-bit binary number to a signed BCD
number.
Subtraction of base numbers is used.

PARAMETERS:
Input: BINN, BINN+1 contain the signed binary
number.

BINN is the most-significant byte.
Binary number is destroyed after conversion.

Output: BCDD, BCDD+1, BCDD+2 contain the BCD
result.
BCDD contains the sign and the most-significant
BCD digit.

The minimum BCD result is —=32768 decimal.
The maximum BCD result is +32767 decimal.

Refer to figures 2.1 and 2.2 for flowchart and program
listing.

Enter BBCD Routine

Initialize PSL:
® Operations with carry
® Clear borrow

!

Clear BCDD, BCDD+1, BCDD+2
-10— R1 (index base register)

Two's complement binary number I

i

H'09’ negative sign) — BCDD+2 J

Operation:

BINN, BINN+1-——BCDD, BCDD+1, BCDD+2

(Binary)

LOOP

Shift BCD register left 4 bits
for loading next BCD digit

I

(BCD)

Y

Subtract current base number
from Binary number

Binary number
negative

Vesl

Add current base number to
Binary number

!

Set pointer to next base
number: (R1) +2—=R1

HARDWARE AFFECTED
RO | R1 | R2 | R3 | R1" | R2” | R
REGISTERS
X X X X
F n SP
PSU
cc | Ibc| RS | wCc | OVF [com| C
PSL
X X X X
RAM REQUIRED (BYTES): ___ &6
ROM REQUIRED (BYTES): 106

EXECUTION TIME: __ _ _Variable

MAXIMUM SUBROUTINE
NESTING LEVELS: 0

Conversion
ready:
(R1)=0Q

(BCDD+2) +1—>BCDD+2 l

L

FIGURE 2-1

Flowchart for Signed Binary-to-BCD Conversion

SIGNETICS CONVERSION ROUTINES

m AS54

© oW e W

34 685
35 87
36 8689
37 4B
38 #68D

43 9560

LA - /3
4 9563
AT 95685
8 858
49 950

51 85K
52 #5%F
53 #511
54 #513
55 #5514
56 6517
57 6514
58 #51C
59 #51E

61 8521
62 6523
63 #5255
&4 8527
85 #9524
66 8528
67 #52E
68 954

% 8532
7185
72 #5%
73 #53%
74 8538
5 K%
76 854
77 8543
78 8545
79 548
o8 9549
81 #54

83 954
84 #554
85 8553
86 955
87 #5%9
88 #9558
8% 855D
9% #55F

[
9682
9605

#565

511
#513

#521

9525
#527

#532

#538

954
55

#55F

27 18
#3 E8
o4
L X]
("X

e

2%
78
CF 4 82
5B 78
5 Fb

[¥ 1N]
9% 18
8 82

]

L XIN]
CE 66 98
AT

8 8
CC 06 #4

e

8 8
[N]
4 82
L

CF b6 82
SB 77
FA 73

85 82

86 82

77 8
fEMN M
AD 45 #F
CE 66 99
SA 75

14 9

6 86 84
82

CC 86 94
1B 64

8 82

9E 4 69
8D 45 11
CE 66 #§
58 73
85 83
59 42
o

+ PD768651

+ BINARY TO BCD CONVERSION +

+

#THIS ROUTINE CONVERTS A SIGNED BINARY NUMBER
#{16 BITS) INTO A SIGNED BCD NUMBER

#(24 BITS: SIGN + 5 BCD BIGITS).

+

#THE BINARY NUMBER 15 IN BINN)BINN+1,

#THE BCD NUMBER 1S IN BCDD:BCDD+1:BCDD+2.

#BINN AND BCDD ARE MOST SIGNIFICANT BYTES.

#MS NIBBLE OF BCDD=8 FOR POSITIVE BINARY NUMBERS,
#M5 NIBBLE OF BCDD=9 FOR NEGATIVE BINARY NUMBERS,
*

#SUBTRAHENDS ARE PLACED IN REGISTER BASE (18 BYTES)

L]
#DEFINITION OF SYMBOLS:
+

Ré EQU § PROCESSOR-REGISTERS
Rt EQU 1
Rz EQU 2
R3 EQU 3
W EQ H'§8’ PSL: 1=RI1TH) #=NITHOUT CARRY
C W LR CARRY+BORRON
NOEQU 2 BRANCH COND.: NEGATIVE
U EQU 3 UNCONDITIONALY
#
+
ORC H'o08' START ADDRESS
#
BINN RES 2 BINARY NUMBER MEWORY LOCATION
BCDD RES 3 BCD RECISTER
BASE BATA W'27:18' 18888

DATA H'83:£8' 1848
DATA H'Bh:64" 198
DATA WBHA' 1§
DATA H'#h#1' 1
LEN EQY $-BASE LENGTH BASE REGISTER
ORG H'S#8! START ADDR. OF PROGRAM
]
BBCD PPSL NC+C ARITHNETIC+ROTATE WITH CARRY:
¥ CLEAR BORRON.
EORZ R# INITIALISATION: CLEAR RS.
LODI/R3 3
LOC# STRA:RG BCDD1R3:-
BRNR:R3 LOCH
LODI:R1 -LEN

CLEAR 3 BYTES OF BCD REGISTER.

LENGTH OF BASE REGISTER.

LODA+RZ BINN MS & BITS BINARY NUMBER.
BCFR:N LOOP 1F POS. GO TO LOOP
COMP LODI.RZ 2 LOAD INDEX REGISTER.
LOCt EORZ RE TNO'S COMPLEMENT BY

SUBA:R@ BINN/RZ)- SUBTRACTING FROM ZERD.

STRA:RG BINN.RZ

BRNR:RZ LOCI RETURN IF NOT READY.
LODI+R8 H'#9’ NEGATIVE SIGN INDICATION.
STRA:RG BCDD42 SIGN IN LSB OF BCD REGISTER.
+ SHIFT BCD REG. LEFT 4 TIMES.
Loop CPSL € CLEAR CARRY FOR ROTATE.
LODIRZ 4 BIT COUNT.

LPZ LODIAR3 3 INDEX BYTE SHIFT.

LP1 LODA:R# BCDD:R3:- BCD DIGIT INTO R#.
RRL:RS CARRY (PREVIOUS WS BIT)-) LSB
STRA:R$ BCDD,R3 AND MS BIT -) CARRY,
BRNR+R3 LP1
BDRR:RZ LP2

+

SUBL ADDI:R1 2 RESTORE BASE INDEX.
LODIRZ 2 INDEX REGISTER
PPSL € CLEAR BORRON

LOC2 LODA:R# BINN:RZ)- LOAD BINN AND SUBTRACT
SUBA'R@ BASE-256+LENR1»- CORRESPONDING
STRA'RS BINNRZ BASE DIGIT
BRNR/RZ LOC2

BCTR:N CORR IF BINN NEG. THEN CORRECTION.
LODARS BCDD+2
ADDZ R2 ADD 1 TO LSB OF BCD NUMBER

STRA:RE BCDD42 C=1 IN PSL AND (RZ):=#
BCTRyUN SUBL

]

CORR LODIRZ 2 INDEX COUNT

LOC3 LODA:R@ BINN:RZ:- ADD CORRESPONDING BASE BYTE 10
ADDA'R@ BASE-254+LEN+2/R1:- BINARY NUNBER.

STRA:R@ BINN,RZ

BRNRRZ LOC3 RETURN IF NOT READTI

ADDIIRY 3 UPDATE BASE POINTER:C=1IN PSL

BRNR:R1 LOOP RETURN IF CONVERSION NOT READY
EXIT HALT END OF CONVERSION

END

FIGURE 2-2 Program Listing for Signed Binary-to-BCD Conversion

SIGNETICS CONVERSION ROUTINES = ASbH4

3. SIGNED BCD-TO-BINARY CONVERSION 1

FUNCTION:

Converts a five-digit signed BCD number to a sixteen-bit
signed binary number.

Addition of base numbers is used.

PARAMETERS:

Input: BCDD, BCDD+1, BCDD+2 contain the BCD
number.
BCDD contains the sign plus the most-significant
BCD digit.
The range of BCD numbers is: -32768<BCD
Number<+32767. ‘
BCDD is destroyed after the conversion.

Output: BINN, BINN+1 contain the signed binary
number.
BINN is the most-significant byte.
Refer to figures 3.1 and 3.2 for flowchart and program
listing.

HARDWARE AFFECTED
Ro | R1 | R2 | R3 | R | R2 | R®
REGISTERS
X X X X
F | n |sp
PSU
cc | ibc| Rs | wc | ovF|com| c
PSL
X X X X
RAM REQUIRED (BYTES): 5
ROM REQUIRED (BYTES): &6
EXECUTION TIME: _______Variable_
MAXIMUM SUBROUTINE
NESTING LEVELS: 0
ASSEMBLER/COMPILER USED: _PIPHASM

Enter BBIN Routine

Operation:

BCDD, BCDD+1, BCDOD+2—BINN, BINN+1
Initialize PSL: (BCD) (Binary)
® Operations with carry

!

0—Binary register
10— R1 (number of base digits)

LOOPi

I Clear carry (o—»c in PSL)]
I LS BCD digit—R3

Yes (Next BCD digit)

BCD digit
zero; (R3) = 0
No

Add current base number
to binary number
(R3) - 1—R3

BCD digit
zero; (R3) = 0,

Shift BCD register right 4 bits
to point to next BCD digit

!

Set pointer to next base
number: {R1} -2—=R1

Sign
BCD number
negative

l Two'’s complement binary number l

!
‘ EXIT ’ ‘ EXIT ’

FIGURE 3-1: Flowchart for signed BCD-to-Binary Conversion

SIGNETICS CONVERSION ROUTINES

= ASH54

i + PD768652

2 FHAAEHA IR I PR R R A 14 14444

3 + BCD TO BINARY CONVERSION

4 FIHEE IR R I 1 4

N +

[# THIS FOUTINE CONVERTS A SIGNED BCD NUMBER

7 + (24 BITS: SIGN+5 BCD DICITS) INTO A SIGNED

8 + BINARY NUMBER (16 BITS).

9 # -32768 <BCD NUMBER {+32747

1# # BCD NUMBER IS LOST AFTER CONVERSION.

11 +

12 # THE BINARY NUMBER IS IN BINN:BINN+1.

13 # THE BCD NUMBER IS IN BCDD.BCDD+1:BCDD+Z (R§-AM).
14 + THE BASE NUMBERS ARE IN BASE:- -1BASE+9 (RE:R4).
15 # BINN AND BCDD ARE MOST SIGNIFICANT BYTES.

14]

17 + PRINCIPLE OF CONVERSION 1S:

18 + BINN = AS.R#+ AL.R1+ A2.RZ+ A3.R3+ A4.RA

19 *+ AP -A4 = NUMBER OF DIGITS OF BCD NUMBER.

o8 + RE -R4 = BASE NUMBERS FOR CONVERSION.

2)

22 + DEFINITIONS OF SYMBOLS:

23 (1] Ré EQ # PROCESSOR-REGISTERS

24 1 Rt EQU 1

25 2 RZ2 EQ 2

26 #9463 R3 EQU 3

27 (1] NG EQU H'#8’ PSL: 1=WITH) #=NITHOUT CARRY
28 #4981 ¢ EQU H'#1? CARRY : BORROM

29 e 1 EW# BRANCH COND: ZERO

k[[L]) ON EQU § ALL BITS ARE 1
3 [1] SICN EQU H'#8’ T0 TEST BCD. NUMBER

32 [] LEN EQU 18 INDEX NUMBER (LENGTH BASE REG)
33 +

3 ORG H 688’

35 +

36 [[1]] BINN RES 2 BINARY NUMBER

37 (1773 BCDD RES 3 BCD NUMBER

38 G605 RS 27 18 BASE DATA H'27:18' 18984 '

39 9687 #3 E8 DATA H'93,E8° 1089

LI 11)] [X DATA W9 64" 108

Al BB # 8 DATA H'#0:8A' 18

42 868D # 6 DATA H'#IIB1’ 1

M ORG H458° START OF PROGRAM

45 M58 845 77 48 BBIN PPSL NC ARTTHMETIC+ROTATE WITH CARRY
[T 1173 2 EORZ Ré CLEAR RE

LYA L 1X] [LN] STRA+RS BINN CLEAR BINARY REGISTERS

48 8456 [T)} STRAIRS BINN+1

49 M9 [5N] LODIR1 LEN INDEX FOR BASE DIGITS

S8 6458 8458 75 41 LOOP CPSL [CLEAR CARRY

51 949 " 06 94 LODA:R3 BCDD+2 LOAB LS BCD DIGIT IN R3

52 8468 4 ANDIIR3 H'BF’ CLEAR MS 4 BITS

53 #462 18 11 BCTRYZ MEXT IF ZERO GO TO NEXT

94 464 BAOA B4 62 LOCt LODI:RZ 2 LOAD INDEX

55 8464 BA6L BE 46 88 LOCZ LODAIRG BINN:RZ:-

56 469 8D 46 #5 ADDA:R® BASE+R1»- ADD BASE DIGIT TO BIN. NUMBER
57 846C CE &b 04 STRA:R BINN:RZ

58 BA4F %75 BRNR:RZ LOC2

59 8471 85 82 ADDIWRY 2 RESTORE BASE POINTER

o8 8473 FB &F BDRR:R3 LOCY IF NOT READY RETURN TO LOCt
b1 L]

62 BATS MATS RO M NEXT LODI:RZ 4 BIT COUNT

63 G477 #4717 #1 6D LPZ LODIR3 -3 INDEX FOR BYTE COUNT

o4 §479 BAT9 OF 65 85 LP1 LODA:R@ BCDD-256+3:R3 BCD DIGIT INTO R§

45 8470 58 RRR:R§ CARRY (PREVIOUS LS BIT) -) NSB
b6 847D CF 65 #5 STRA+R@ BCDD-256+3+R3 AND LS BIT -) CARRY.
67 8488 DB 77 BIRRR3 LP1 NEXT BCDD BYTE

48 §482 58 st €

69 B484 FAT1 BDRR:RZ LP2 NEXT SHIFT OF BCD REG. BIT
79 $486 F9 88 BDRR:R1 $42 UPDATE BASE POINTER WITHOUT
71 §488 F3 51 BDRR:R1 LOOP AFFECTING C FLAG IN PSL AND
b/] GO TO LDOP IF NOT READY
73 8484 F4 88 TAI+R® SIGN

74 $48C 98 6D BCFR:ON EXIT IF SIGN POS. THEN READY.
75 B4SE #A8E 77 61 COMP PPSL [CLEAR BORROW

76 8498 86 82 LODIR2 2 NUMBER OF DIGITS

77 8492 A9 28 LP3 EORZ R# THO'S COMPLEMENT BY

78 8493 AE 46 88 SUBA:R@ BINN:RZ:- SUBTRACTION FROM ZERO

79 849 CE 66 88 STRA:RS BINN:RZ

88 8499 54 77 BRNR+RZ LP3

81 +

82 9498 9498 49 EXIT HALT END OF CONVERSION

83 END

FIGURE 3-2 Program Listing for Signed BCD-to-Binary Conversion

SIGNETICS CONVERSION ROUTINES = AS54

4. SIGNED BCD-TO-BINARY CONVERSION 2

FUNCTION:

Converts a five-digit signed BCD number to a sixteen-bit
signed binary number.

A multiplication method is used.

PARAMETERS:

Input: BCDD, BCDD+1 contain the BCD number.
BCDD contains the sign plus the most-significant
BCD digit.
The range of BCD numbers is: -32768<BCD
Number<+32767

Output: BINN, BINN+1 contain the signed binary
number.

BINN is the most-significant byte.

Refer to figures 4.1 and 4.2 for flowchart and program
listing.

HARDWARE AFFECTED
RO | R1 | R2 | R3 | RT | R2" | R
REGISTERS
X X X X
F " SP
PSU
CC | IDC| RS | WC | QVF COM; C
PSL
X X X X X
RAM REQUIRED (BYTES): 6
ROM REQUIRED (BYTES): 8
EXECUTION TIME: ____ _\ Variable
MAXIMUM SUBROUTINE
NESTING LEVELS: o0
ASSEMBLER/COMPILER USED: PIPHASM

Enter BCDC Routine

i Operation:

BCDD, BCDD+1, BCDD+2-—»Binn, Binn+1
Initialize PSL: (BCD) (Binary)
® Operations with carry

!

0—>BINN, BINN+1
5 —A3 (BCD digit count)

!

I Save sign of BCD number]
l Clear carry I

i N

BINN, BINN+1—R1, R2
(Binary number)

!

Rotate (R1, R2) Left twice I

oo

L > Multiplication: binary number x 10

I(R1, R2)+(BINN, BINN+1)—R1, RZI

!

l Rotate (R1, R2) Left once

!

(R1, R2) + MS BCD digit—=R1, R2
(R1, R2)—» BINN, BINN+1

i

Shift BCD register left 4 bits
to point to next BCD digit

!

(R3) ~1—»R3
(Digit count)

Conversion
ready: (R3)=0

> No

-

Sign
negative

[Two's complement binary number I

C EXlIT D) C exit)

FIGURE 4-1: Flowchart for signed BCD-to-Binary Conversion
(Multiplication Method).

SIGNETICS CONVERSION ROUTINES

= AS54

1 + PD76#653

2 + 44444 P43 44444

3 + BCD TO BINARY CONVERSION +

4 F34443 4349444399453 43 9484440000 4 4 44 1444 494

N)

[# THIS ROUTINE CONVERTS A SIGNED BCD NUMBER

7 # (24 BITS: SIGN + § BCD DIGITS} INTO A SIGMED

8 # BINARY NUMBER (16 BITS).

9 # -32768 { BCD NUMBER { +32767

19 + BCD NUMBER 1S LOST AFTER CONVERSION

11 L}

12 # PRINCIPLE:

13 # BIN.=CLCCLCIAREE) +B) #18) +C) #18) +D) #18) +E
14 + ABCDE= BCD NUMBER

15]

16 + MULTIPLICATION BY 16 1S DONE BY:

17 + LOAD RZ:R1 WITH BIN. NUMBER,» SHIFT LEFT TNICE,
18 + ADD BIN. WUMBER TO R2,R1» SHIFT LEFT ONCE:

19 4+ STORE RZ:R1 IN BINN:BINN+! AS RESULT

] +

2 + DEFINITION OF SYMBOLS:

22 (1, 1] Ré EQW [] PROCESSOR-REGCISTERS

23 8861 Rt EQYU 1

2% #9892 R2 EQ 2

25 9083 R3 EQU 3

26 (11 W EW H'88’ PSL: 1=WITH: B=NITHOUT CARRY
27 881 [LY CARRY : BORROW

28 #9882 N EW z COND: NEGATIVE

29 #9485 NMEQU 5 INDEX FOR NUMBER OF BCD DIGITS
3]

3 ORG H' 688’

32 +

33 gose BINN RES z BINARY NUMBER

34 (1173 BCDD RES 3 BCD NUMBER AND SIGN

35 #685 SICN RES 1 SAVE SIGN DIGIT

3]

38 +

39 ORG W 458" START OF PROGRAM

L] *

M M T 8 BCDC PPSL WC ARITH, :ROTATE NITH CARRY
LY 1374 28 EORZ RS CLEAR RE

43 #4453 CC #6 84 STRA:RG BINN CLEAR BINARY NUMBERS

4 8454 CC 86 81 STRA+RE BINN+L

45 8459 #7 85 LODI+R3 NUM BCD INDEX REGISTER

4 +

47 845B #C 86 62 LODAR@ BCDD SAVE SIGN OF BCD NUMBER IN
48 #45E CC 86 85 STRA'RE SIGN MEMORY LOC. SIGN

L] +

58 + MULTIPLY BINARY NUMBER BY 16
51 #4601 #6175 41 LOOP CPSL € CLEAR CARRY

52 B483 #D 86 86 LODA:RY BINN LOAD BIN. NUMBER IN Ri:R2
53§64 #E 86 81 LODA:RZ BINN+1

54 B9 D2 RRLR2 ROTATE REGISTERS R1:R2 LEFT 2
55 #4bA i1 RRL+RL

56 9468 D2 RRL1R2

57 844 Dt RRL:R1

58 #46D 8E 86 81 ADDA:RZ BINN+1 ADD BIN. NUMBER T0 Ri:RZ
59 8474 8D 86 08 ADDAIRT BINN

o8 8473 D2 RRL:R2 SHIFT R1+R2 LEFT ONCE

61 #4714 nt RRLIRI

82 ¥

83 Ll

o4 8475 8 86 82 LODA:RG BCDD LOAD MS BCD DIGIT IN R
45 8473 Mo ANDI:RS H'8F’ CLEAR MS & BITS

b6 B47A 82 Dz R2 ADD BCD TO BINARY NUMBER
67 #47B 85 o ADDI:RY 8 ADD CARRY TO WS BYTE

68 847D CD #6 88 STRAIR1 BINN STORE RESULT IN BINN:BINN+1
69 facd CC 86 #1 STRA'RG BINN+1

% + ROTATE BCD NUMBER & TIMES LEFT
K ¥ 70 POINT TO NEXT BCD DIGIT
72 8483 5 84 LODI+R 4 BIT COUNT

73 6485 BABS #4683 LPZ LODI'RZ 3 INDEX FOR BYTE COUNT

T4 BAST B487 BE 46 B2 LP1 LODA/RS BCDD)RZ,-

75 9484] RRL/R8 SHIFT BCD BYTE LEFT

76 §48B CE &6 82 STRA:RE BLDD:RZ

77 #A8E 5A 77 BRNR:RZ LP1 NEXT BYTE OF BCD REGISTER
78 8498 F9 73 BDRR:R1 LPZ NEXT BIT SHIFT

79 #42 FB 4D BDRR:R3 LOOP TO LOOP IF MULTIPLY NOT REABY
84 +

81 8494 #C 86 85 LODA+RS SIGN

82 8497 94 #D BCFR:N EXIT IF SIGN POS. THEN READY
83 8499 778 PPSL C CLEAR CARRY

84 §49B 86 82 LODIIRZ 2 INDEX LOADING

85 649D 849D 24 LP3 EORZ R# TNO'S COMPLEMENT BY

56 B49E I] SUBA,R@ BINNIRZ SUBTRACTING FROM °FP°

87 84l Cr 86 08 STRARA BINK

85 BAA4 SA 77 BRNR/RZ LP3

89 3

99 #4n6 BaAL 44 EXiT HALT END OF CONVERSION

91 END

FIGURE 4-2 Program Listing for Signed BCD-to-Binary Conversion

SIGNETICS CONVERSION ROUTINES = AS54

5. SIGNED BCD-TO-ASCII CONVERSION

FUNCTION:

Converts n BCD digits plus sign to n + 1 ASCII characters
(sign included).

PARAMETERS:

BCDD, BCDD+1, ------ 'BCDD+ (numb - 1)
BCDD contaihs the sign plus the most-significant
digit (2 BCD digits/byte).

Numb;,is the number of BCD bytes.

ASCI,ASCI+1, ------ , ASCIl + (num - 1) contains
the signed result.

ASCI contains the sign.

ASCI+1 contains the most-significant byte.

Input:

Output:

Refer to figures 5.1 and 5.2 for flowchart and program
listing.

HARDWARE AFFECTED

RO | R1 | R2 | R3 | R | RZ | R¥
REGISTERS

X X X X

F 1" SP
PSU

cc | ibc| RS | we | ovF|com| ¢
PSL

X X X X

N Numb, N Num+1

RAM REQUIRED (BYTES):

ROM REQUIRED (BYTES): 8%
EXECUTION TIME: __ __ Variable
MAXIMUM SUBROUTINE

NESTING LEVELS: 0

PIPHASM

ASSEMBLER/COMPILER USED:

10

Enter BASC Routine

Y

Initialize PSL:
® Operations with carry
® Clear carry

i

[Number of BCD digits —R3]

LOOPl

[LS BCD-Byte—=R0 i
i

L Clear MS 4 bits of RO I
!

L (RO) + H '30'—R0 I
:

(RO)—>ASCI indexed (R3)

SHFT‘

Shift BCD register right 4 bits
to point to next digit.

!

(R3) -1—R3
(index counter)

I Sign digit—»R0 I
—

Operation:
BCD digit + H ‘30'—ASCII
(Conversion)

Yes
Positive

Negative

l A+ ——ASCI I

L A ‘- —>ASCI

EXIT

FIGURE 5-1

Flowchart for BCD-to-ASCII Conversion (signed)

SIGNETICS CONVERSION ROUTINES = AS54

i ¥

3 + PD768854

3 FHHHEPEI IR R R bR R R E R R b b 4

4 % BCD TO ASCI1 CONVERSION +

5 B PR R R R R R R R E R H R R PR R 44

b *

1 # THIS ROUTINE CONVERTS A SIGNED BCD NUMBER

8 * INTO ASCIT CHARACTERS (SICN INCLUDED).

9 % BCD FORMAT: SIGN + BCD DIGITS (THO DIGITS:BYTES)
18 * THE NUMBER OF BCD DIGITS -) R3 = NUM

11 + THE NUMBER OF BCD BYTES -)> RZ = NUMB

12 # BCD NUMBER IS IN BCBD:BCDD+1:---+BCDD4(N-1)

13 # ASCIT CHARACTERS ARE IN ASCIT+ASCII#1y---+ASCIT+NUM
14 * (SIGN) (BCD DIGITS)

15 +

16 * DEFINITIONS OF SYMBOLS:

17)

18 1]} Ré EQU [

19 8881 Rt EQU 1

28 8862 Rz EQU 2

21 0883 R3 EGU 3

22 #6488 WC EQU H! 88’ PSL: 1=WITHy B=NITHOUT CARRY
23 2881 € EW H'81? CARRY : BORROMW

24 8683 UN EQU 3 COND: UNCONDITIONAL

25 [11]] PR 1] # ZERD

26 #

21 4 IN THIS EXAMPLE THE CONVERSION OF 5 BCD DIGITS
28 + IS PERFORMED.

29]

3 8643 NUMB EQU 3 NUMBER OF BCD BYTES

31 #9485 NUM EQU N NUMBER OF BCD DIGITS

32 #

34)

35 ORG HY4ED®

3%)

37 (L1} BCDD RES NUNB RESERVE FOR BCD NUMBER

38 BAE3 ASCI RES NUM+1 RESERVE FOR SIGN:ASCII DIGITS
39 #

L1} ORG H'588' PROGRAM START HERE

L3]

42 0564 @588 77 88 BASC PPSL N ARTTHMETIC:ROTATE WITH CARRY
43 8582 758 [CLEAR CARRY

44 9564 #7 85 LODI,R3 NUM INDEX REGISTER

45 *

46 8584 8586 BC B4 E2 LOOP LODA+R@® BCDD+NUMB-1 LOAD LS BCD DIGIT IN RS
47 8589 44 oF ANDI'R@ H’'8F’ CLEAR MS & BITS

48 8508 84 38 ADDI+RO H'3H! ASCII CHARACTER

49 #56D CF &4 E3 STRAIRS ASCIIR3 STORE ASCII CHARACTER

58 +

St 8514 #5168 65 84 SHFT LODIsR1 & BIT COUNT

52 8512 6512 84 FD LP2 LODI'RZ -NUMB INDEX FOR BYTE SHIFT

93 6514 6514 6k 43 E3 LP1 LODA:R# BCDD-256+NUMB.RZ

54 8517 b RRR+RE CARRY (PREVIOUS LS BIT) -)> MSB
35 6518 CE 63 E3 STRA:R@ BCDD-256+NUMB:RZ AND LS BIT -)CARRY
3% #8518 DA 77 BIRR:RZ LP1

57 851D 75 8t gpsL € CLEAR CARRY

38 #51F Fe 71 BDRR:R1 LP2

59 8521 FB 43 BDRR)R3 LOOP IF NOT READY GO TO LOOP
48 #

61 @523 8523 @0 84 E2 SICN LODA:R® BCDD+NUMB-1 SIGN -) RS

b2 8524 18 #7 BCTR»Z POS

43 @528 8528 84 2D NEG LODI:RG A'-'

b4 #5724 CC 94 E3 STRA:R# ASCI

65 852D 1B #5 BCTR:UN EXIT

bb @52F #52F 84 2B POS LODIRE A'+!

47 #9531 CC #4 E3 STRA:RS ASCI

48 +

69 8534 8534 M EXIT HALT END OF CONVERSION

18 END

FIGURE 5-2 Program Listing for BCD-to-ASCIl Conversion (Signed)
1

SIGNETICS CONVERSION ROUTINES = AS54
6. ASCII-TO-BCD CONVERSION
FUNCTION:
Converts n ASCII digits to n BCD digits.
—_——
ASC' I BCD Enter ASBC Routine
START
PARAMETERS:
Input: ADIG, ADIG+1, --, ADIG+(n - 1) contain — C%E‘L’_
ASC” dlgItS. : glpErano‘ns without carry
The most-significant digit is in ADIG I
.. Add R1
(byte/digit). BCD —=RO
Count
Output: BCDD, BCDD+1, -, BCDD + (n-1) contains —-R? !
BCD digits. T e
The most-significant digit is in BCDD Coont 500 (72
(2 digits/byte). e AddL
. LOOP 1o BCD
Refer to figures 6.1 and 6.2 for flowchart and program Move ASCI Count (R2)
listing. (R3) digi
‘ Yes
HARDWARE AFFECTED pryzn '
RO No
RO R1 R2 R3 R1’ R2' R3’ l
REG'STERS Save
X X X X RO—=R1
F 1] SP Saveio
PSU Save RO
BCDD (R2)
S CcC IDC| RS WC | OVF|{COM| C R3-1 Ye
PSL - >
X | x X | x X =0~
Move ASCII
(R3) digit
RAM REQUIRED (BYTES): __NADIG+nBCDD “’T
Shift RO
ROM REQUIRED (BYTES): 37 left 4
EXECUTION TIME: _______Variable
MAXIMUM SUBROUTINE
NESTING LEVELS: 0

ASSEMBLER/COMPILER USED: PIPHASM

12

FIGURE 6-1

Flowchart for ASCII-to-BCD Conversion

SIGNETICS CONVERSION ROUTINES = AS54

i + PD74B855

2 D R 2SS eSS T e S SRS R R AR R
3 #+ ASCIT TO BCD CONVERSION +
4 T T S P Ee TS Ry a2 22
9)

b # THIS ROUTINE COMVERTS A STRING OF ASCII

7 # DIGITS TO A STRING OF BCD DIGITS,

8 3

9 * ADIG IS MS DIGIT ASCII

18 * BCDD IS MS DIGIT BCD

it #

12 + DEFINITIONS OF SYMBOLS:

13 o008 Ré EQU] PROCESSOR-REGISTERS
14 8881 Rt EQU i

15 8482 Rz EQU rd

16 8863 R3 EQU 3

17 8888 W EQU H'#8! PSL: 1-NITH,» B-NITHOUT
18 0661 ¢ EQuY Hi#1! CARRY: BORRON

19 8883 UN EBY 3 BR.COND: ALWAYS
28 3
21 % IN THIS EXAMPLE THE CONVERSION OF 5
22 # ASCII CHARACTERS IS PERFORMED.

23)
24 8885 NUR EQU b}
25 0893 NUMi EQU 3

26 3
28 ORG H'758¢ RAM DEFINITIONS
79 8758 ADIG RES NUH ASCI1 BYTES RESERVED
38 #8685 ACNT EQU $-ADIG ASCIT DIGIT COUNT
31 8755 BCDD RES NUMt BCD BYTES RESERVED

37 98683 BCNT EQU $-BCDD BCD BYTE COUNT
33 ¥

34 ORG H1588! START OF SUBROUTINE

35 #8568 75 89

36 8562 86 63

37 8584 07 85

38 8586 8F 67 AF
39 8589 A4 38

A8 #56B 1

41 #58C CE 67 54
A2 856F FB 63

43 8511 1F 85 25
44 8514 @F 47 &F
45 8517 A4 38
4 #519 D8

47 851A D8

48 8518 D8

49 #51C D@

58 851D 41

51 #51E CE 67 54
52 #521 FA 88

93 8523 FB &1

54 8525 48

3%

CONV CPSL MWC+(
LODI+RZ BCNT
LODI.R3 ACNT

LOOP LODA.R® ADIG-1:R3
SUBI RE H'38’
STRZ Rt
STRA!RS BCDD-1:R2
BDRR:R3 NEXT
BCTA:UN BYE

NEXT LODA:R# ADIG-1.R3
SUBI+RE H'38’
RRL+R8
RRL:R8
RRL:R#

RRL:R#

I0RZ R1
STRARS BCDD-1.R2
BDRR:RZ $+42
BDRR:R3 LOOP

BYE " HALT
END

ARITH.WITHOUT:NO CARRY
BCD COUNT -) RZ

ASCII COUNT -)R3

Ré HAS ASCIT DIGIT
MAKE 1T BCD

R§ -)R1

SAVE 1 BCD DiGIT
DECREMEMT -NON ZERO BR
ONVERSION COMPLETE
NEXT ASCII DIGIT

MAKE IT BCD

SHIFT LEFT 4 BITS

INCLUSIVE OR LOW ORDER
STORE 2 BCD DIGITS
DECREMENT BCD COUNT
DECREMENT-NON ZERO BR.
END OF ASCII -) BCD

FIGURE 6-2 Program Listing for ASCll-to-BCD Conversion

13

SIGNETICS CONVERSION ROUTINES = AS54

7. HEXADECIMAL-TO-ASCII CONVERSION

FUNCTION:

Converts a string of hexadecimal digits to a string of ASCI|
digits.

PARAMETERS:

Input: HEX, HEX+1, ----, HEX + (n = 1)
HEX is the most-significant digit (2 Hex.
digit/byte).

ASCI, ASCI+1, ----, ASCI + (n = 1)
ASCI is the most-significant digit.

Output:

Refer to figures 7.1 and 7.2 for flowchart and program
listing.

HARDWARE AFFECTED
RO | R1 | R2 | R3 | R1" | R2” | R
REGISTERS
X X X X
F " SP
PSU
cc | Ibc| RS | wc | ovF|com| C
PSL
X X X X X
RAM REQUIRED (BYTES): ____n_H:E_"_w*_n_A_SEi _____
ROM REQUIRED (BYTES): 59

EXECUTION TIME: ___Variable

MAXIMUM SUBROUTINE
NESTING LEVELS:

14

Enter HASC Routine

START
CONV
Initialize PSL:
® Operations with carry
® Set carry
NEXT
‘ Move HEX
ASCII digits (R2)
Length —R0O
—=R3 i
HEX RO—=R1
Length
—»R2 l
“ Shift
right 4
Move HEX bits R1
Digits (R2)
—R0 l
‘ Clear MS
4 bits R1
RO—=R1 l
| Get ASCII
Equal (R1)
Clear MS —R0
4 Bits R1 l
l Save
ASCIl
Get ASCII Character
Equal (R1)
—R0 l
1 (R2)-1—»R2
Save ASCII
Character
T

FIGURE 7-1

Flowchart for Hexadecimal-to-ASCII Conversion

SIGNETICS CONVERSION ROUTINES = AS54

QO O~ U W

~0

18

i

12

13 #8688

14 pos1

15 #882

16 8683

17 8888

18 9881

19 8863

8

21

22

23 862

24 9663

25

4

28 #6688

29 8862

39 8682

31 6863

3

3

34 8568 77 89
35 #5602 87 83
36 8584 86 82
37 8586 O 65 FF
38 85689 C1

39 #5684 45 6F

A8 856C 8D 65 2C
41 858F CF 66 81
42 #512 FB 63

43 9514 IF 85 7B
44 8517 BE &5 FF
45 8514 €1

46 8518 51

47 851C 51

48 851D 51

49 #51E 51

38 851F 45 #F

31 8521 4D 65 2¢
52 #5284 CF 66 61
53 8527 Fh 88

54 #5329 FB 5B

+ PD76BBSH

T Ny st st
*+ HEXIDECIMAL TO ASCII CONVERSION +
FHHHE R 1 b b B b4

]

THIS ROUTINE CONVERTS A STRING OF ASCII
DIGITS TO A STRING OF HEX DIGITS.

]

+ ASCI IS WS DIGIT ASCII,
+ HEX IS M5 DIGIT HEXIDECIMAL.

L 4

* DEFINITION OF SYMBOLS:

R§ EQU 8
Rt EQU 1
Rz EQU 2
R3 EQU 3

W EQU H'8g’
€ EQ H'#1?
UN EQU 3

]

PROCESSOR-REGISTER

ARITHMETIC CARRY
ARRY : BORRON
UNCOND. BRANCH

+ IN THIS EXAMPLE 3 HEXIDECIMAL
+ CHARACTERS ARE CONVERTED,

NUM EQU z
NUNL EQU 3
3

ORG H' 688’
HEX RES NUM

HLEN EQU $-HEX
ASCI RES NUN1
ALEN EQU $-ASCI
3

URG HIOp®’
CONV PPSL NC+C
LODIR3 ALEN
LODIR2 HLEN
CHEX LODA.R® HEX-1,R2
STRZ R
ANDI+RL HYOF?
LODARE ANSI R1
STRA:R# ASCI-1)R3
BDRR!R3 NEXT
BCTA»UN BYE
NEXT LODA.R8 HEX-1,R2
STRZ Rt
RRR:R1{
RRR:R1
RRR:R1
RRR:R1
ANDI:R1 HIBF’
LODARE ANSIRI
STRA:R# ASCI-1.R3
BDRR:RZ $+42

BDRR:R3 CHEX

HEX BYTE COUNT
ASCIT BYTE COUNT

RAN DEFINITIONS
RESERVES HEX BYTES
LENGTH OF HEX
RESERVES ASCIT BYTES
LENGTH OF ASCII

START OF ROUTINE
ARITH.NITH, SET CARRY
R3= ASCIT LENGTH

R2= HEX LENGTH

GET HEX BIGITS

R# ->R1

CLEAR WS & BITS

LOAD ASCIT CORRESPONDI
SAVE 1T

R3-1» R3{) BRANCH
END OF CONVERSION

GET HEX DIGITS

R# -> Ri

SHIFT RIGHT & BITS

CLEAR MS 4 BITS

LOAD ASCI1 CORRESPONDI
SAVE IT

R2 - 1 CONT.

R3-1» R3{> BRANCH

% 3
56 8528 48 BYE HALT END OF CONVERSION
57 ¥
98 #52C 38 31 32 ANST DATA A'8123454789ABCDEF!
34 35 36 37
38 39 41 42
BUHEY
39 3
o8 END

FIGURE 7-2 Program Listing for Hexadecimal-to-ASCII Conversion
15

SIGNETICS CONVERSION ROUTINES = AS54

8. ASCII-TO-HEXADECIMAL CONVERSION

FUNCTION:

Converts a string of ASCII digits to a string of hexadecimal
digits. The conversion is done by table look-up. Non-
numeric ASCII halts this routine. It may be changed to
report non-numeric.

PARAMETERS:
ASCI, ASCI+1, ----, ASCIl + (n - 1)
ASCI is the most-significant digit.

HEX, HEX+1, -, HEX + (n - 1)
HEX is the most-significant digit (2 Hex.
digits/byte)

Input:

Output:

Refer to figures 8.1 and 8.2 for flowchart and program
listing.

HARDWARE AFFECTED
RO | R1 | R2Z | R3 | Ri° | RZ | R3
REGISTERS
X X X X
F " SP
PSU
cc | Ibc| RS | wc | ovF|com| C
PSL
X X X X X
RAM REQUIRED (BYTES): _ _nASCI+nHEX
ROM REQUIRED (BYTES): 68
EXECUTION TIME: __ Variable
MAXIMUM SUBROUTINE
NESTING LEVELS: __ 1
ASSEMBLER/COMPILER USED: _PIPHASM _________

16

Enter ASHC Routine

NEXTl

START
ASCII digit (R3)
—=R0
CONV
Initialization LKUP =16—=R1
PSL=WC+C
Table look-up ALKU l
l RO—»=R1
Compare
R3 = ASCII Length RO—
R2 = HEX Length Table (R1)
ACON{
ASCII digit (R3)
—-4 Yes
—=RO Shift left @
4 bits RO
/N : -
Clear LS Codmpare
Table look-up R1=1
RO—»R1 4 bits RO
! |
Y
» Place low
R1 RO order HEX Yes
in RO
Store low l No
order HEX (R2)
Store 2
HEX (R2) away Halt at table end;

may be changed
to report non-
numeric

FIGURE 8-1 Flowchart for ASCll-to-Hexadecimal Conversion

SIGNETICS CONVERSION ROUTINES = AS54

@ O~ U LD Y e

18 9488
19 8861
26 9863
21 8882
22 deed

39 8508 77 89

4§ 9562 47 83

41 564 86 82

42 8566 8F &5 FF
43 569 3B #8

44 8508 91

45 850C CE &6 62
4 856F FB 1D

47 #511 1B 31

48

49 8513 65 18

56 8515 ED 45 iE
51 #518 14

52 8519 ES 61

93 #51B 94 78
54 851D 48

‘55

¥ PD768857

e S LS AR 2L SR SR SR TSR SR TSRS R R

+ ASCII 70 HEX CONVERSION +
PR R R R R b

¥

+ THIS ROUTINE CONVERTS
+ DIGITS TO A STRING OF
ASCT IS WS BIGIT ASCII

STRING OF ASCII
HEXTDECIMAL DIGITS

HEX IS WS DIGIT HEXIDECIMAL
CONVERSION DONE BY TABLE LOOKUP
NON NUMERIC ASCII HALT ROUTINE

#
DEFINITION OF SYMBOLS:

Ré EQY #
Rt EQU 1
R2 EQU 2
R3 EQY 3

W EQU H'g8’
[1] H'at’

UN EQU 3
LT Eau Z
EQ EQU [}

]
* IN THIS EXAMPLE 3 ASCI

REGISTER-PROCESSOR

ARITHAETIC CARRY

ARRY : BORROW

BRANCH UNCOND.
LESS THAN
EQuAL

I DIGITS

ARE CONVERTED TO HEXIDECIMAL

+

NUM EQU 3
NUME EQU 2
]
]
ORG H' 668’
ASCI RES NUM

ALEN EQU $-ASCI

HEX RES LULH

HLEN EQU $-HEX

*
ORG H'568’

CONV PPSL NC4C
LODIR3 ALEN
LODI,RZ HLEN

ACON LODA+RB ASCI-1:R3
BSTR+UN LKUP
Loz Rt
STRAIRB HEX-1:R2
BDRR:R3 NEXT
BCTR:UN BYE

#

LKUP LODI.RL 16

ALKU COMAsRB ANSINRI.-
RETCEQ™
COMI.RE 1
BCFRLT ALKU
HALT

3

ASCIT BYTE COUNT
HEX BYTE COUNT

RAM DEFINITIONS
RESERVED ASCII BYTES
LENGTH OF ASCiI
RESERVED HEX BYTES
LENGTH OF HEX

START OF ROUTINE
ARITH.NITH + CARRY SET
R3 = ASCII LENGTH

RZ = HEK LENGTH

GET ASCII DIGIT

LOOKUP SUBROUTINE

Rt -)> R#

SAVE HEX CORRESPONDING
(R3-1}+ R3 <) BRANCH
END OF CONVERSION

LOOP CONSTANT

CONPARE TO TRBLE
RETURN - MATCH FOUND
TEST END OF TABLE

NO- LOOK AGAIN

ERROR - NON NUMERIC HE

56 #51E 38 31 32 33
34 35 36 37
B9
43 M 45 4

97

58 #52E OF &5 FF

59 #3531 3B of

& 8533 41

61 8534 1@

62 8535

63 #3536 D8

o4 9537 D8

45 8538 A4 Fé

b6 B53A oF &b 82

67 953D CE 46 82

68 548 FA 86

49 8542 FB 42

i

71654 48

72

ANST DATA A'@123454789ABCDEF’

*
NEXT LODA:R® ASCI-1:R3 GET NEXT ASCII DIGIT

BSTR,UN LKUP LOOK UP SUBROUTINE
gz Ri Rt -) RS

RRL:R@ SHIFT LEFT 4 BITS
RRL:RE

RRL: RS

RRL:R8

ANDL:RE H'F§’ CLEAR LS 4 BITS
T0RA:RE HEX-1)R2 COMBINE LOM ORDER
STRA:R# HEX-1:R2 SAVE 2 HEX DIGITS

BORR:RZ $+2 (R2-1}» CONTIUNE
BDRR1R3 ACON {R3-1)y R3 () BRANCH
#
BYE HALT END OF CONVERSION
END

FIGURE 8-2 Program Listing for ASClI-to-Hexadecimal Conversion

17

NOTES

18

NOTES

19

Signetics 2650 Microprocessor application memos currently available:

AS50
AS51
AS52
AS53
ASbH4
SP50
SP51
SP52
SP53
SP54

SS50
SS51
MP51
MP52
MP53

Serial Input/Output

Bit and Byte Testing Procedures

General Delay Routines

Binary Arithmetic Routines

Conversion Routines

2650 Evaluation Printed Circuit Board Level System (PC1001)
2650 Demo Systems

Support Software for use with NCSS Timesharing System
Simulator, Version 1.2

Support Software for use with the General Electric Mark 111 Timesharing
System

PIPBUG

Absolute Object Format (Revision 1)

2650 Initialization

Low Cost Clock Generator Circuits

Address and Data Bus Interfacing Techniques

© N.V. Philips’ Gloeilampentfabrieken

This information is furnished for guidance. and with no guarantees as to its accuracy or completeness; its publication conveys no licence under any patent or other right, nor
does the publisher assume liability for any consequence of its use; specifications and availability of goods mentioned in it are subject to change without notice; it is not to be
reproduced in-any wdy, in'whole or in part, without the written consent of the publisher

a4-76

0200 ENQ RR081

and materials

priies] Electronic p
% components H ' LI ps

FIXED POINT DECIMAL

ARITHMETIC ROUTINES AS55

AN APPLICATION MEMO

Sinotics

FIXED POINT DECIMAL ARITHMETIC ROUTINES

AS55

INTRODUCTION

The numbers used in digital systems are
usually expressed in binary notation.
Some commonly used formats are:

e magnitudes only for unsigned numbers
® 1's complement and 2's complement for
signed numbers.

However, binary numbers are difficult to
interpret, and man-machine interface can
be greatly improved by presenting numbers
in decimal notation. Since virtually all digital
systems operate on numbers in binary form
(i.e., 1’s and 0’s), decimal numbers must be
converted to binary during the input proc-
ess, and reconverted to decimal notation
during the output process. In cases where
decimal input and/or output is required, the
ideal solution would be a digital system
capable of interpreting and processing dec-
imal numbers.

This applications memo describes several
methods of handling binary-coded-decimal
(BCD) numbers with the Signetics 2650
microprocessor. Special provisions in the
2650 for these operations, including the
Interdigit Carry (IDC) flag bit and the Deci-
mal Adjust Register (DAR) instruction, are
discussed. These provisions greatly simpli-
fy interfacing of the 2650 to decimal-
oriented peripheral devices, such as CRT
display terminals, printers, and keyboards.
Basic arithmetic routines (add, subtract,
multiply, and divide) for both signed inte-
gers and signed fixed-point numbers are
given.

BCD NOTATION

In BCD notation, each decimal digit re-
quires a 4-bit code as indicated below:

0 = 0000 5 =0101
1 =0001 6 =0110
2 =0010 7=011
3 =0011 8 = 1000
4 =0100 9 = 1001

Codes 1010 through 1111 are not used.

Two decimal digits can be packed into one
8-bit byte—the size of a 2650 dataword. The
range within 1 byte is consequently 004
through 99,,. For instance, the number 15,
is coded as 00010101.

CARRY (C) AND INTERDIGIT
CARRY (IDC) FLAGS..

The Program Status Lower (PSL) of the
2650’s Program Status Word (PSW) register
contains 2 carry flags: Carry (C) and Inter-
digit Carry (IDC). During execution of any
arithmetic instruction, both flags are set or

2

2650 MICROPROCESSOR APPLICATIONS MEMO

reset depending on the result of the opera-
tion, as illustrated in Figure 1:

e The Carry (C) flag is set as a result of a
carry (or no borrow) out of the most-
significant-bit (bit 7) of the affected regis-
ter Rx, and hence out of the most-
significant BCD digit.

e The Interdigit Carry (IDC) flag issetas a
result of a carry (or no borrow) out of bit
3, and hence out of the least-significant
BCD digit and into the most-significant
BCD digit.

DECIMAL ADJUST REGISTER
(DAR) INSTRUCTION

If 2 BCD numbers are added or subtracted
by means of binary arithmetic instructions,
the result may not be a BCD number. For
example:

2346 + 5616 = 7916,
but
18,6 + 35,5 = 4D;q.

Since the binary codes 1010 (A4¢) through
1111 (F4¢) are not used in BCD, the result ofa
binary arithmetic instruction may need a
correction of (+6) in case of an add opera-
tion or (-6) in case of a subtract operation.
The 2650 performs this correction by means
of the Decimal Adjust Register (DAR) in-
struction. This 1-byte instruction condition-

ally adds a decimal 10 (2's complement
negative 6 in a 4-bit binary number system)
to either the high order 4-bits and/or the low
order 4 bits of a specified register Rx, which
may be any of the 2650's seven CPU regis-
ters.

The truth table of Figure 2 indicates the
logical operation performed. The operation
proceeds based on the values of the Carry
(C) and Interdigit Carry (IDC) flags in the
Program Status Word. The C and IDC re-
main unchanged by the execution of this
instruction.

The WC (With/Without Carry) bitin PSL has
no influence on the DAR instruction.

GENERAL SUBTRACTION
RULES

In the case of subtraction, a correction of
(-6) is required for the digit(s) which gener-
ate a borrow upon execution of the subtract
instruction. This can be performed directly
by the DAR instruction.

Single-Byte Operands/

Result:

Subtraction of single-byte operandsis done
by performing the subtract instruction and
then performing the DAR instruction; the
borrow bit must be cleared initially. See
Example A.

SETTING THE CARRY AND INTERDIGIT
CARRY FLAGS

} PSL

} Register Rx

|

Most - significant
BCD digit

PSL = Program Status Word Lower
Register Rx can be any CPU register

T D

o

Least - significant
BCD digit

Figure 1
TRUTH TABLE FOR DAR INSTRUCTION
BEFORE: DAR, Rx AFTER: DAR, Rx
' Rx Rx
(] IDC MSD LSD C IDC MSD LSD
0 0 a b 0 0 a+104, b+10,¢
0 1 a b 0 1 a+1049 b
1 0 a b 1 0 a b+1044
1 1 a b 1 1 a b
NOTE Figure 2

IDC is not added to the upper digit in the ‘a+10,,’ operation.

sifnotics

FIXED POINT DECIMAL ARITHMETIC ROUTINES

AS55

If the With Carry (WC) bit in PSL is zero (no
carry/borrow), the first instruction is not
required.

Muitiple-Byte Operands/

Result:

When dealing with multiple-byte operands,
arithmetic operations including carry, are
required. Hence, the WC bit in PSL must be
set to 1 prior to execution. If indexing is
used, multiple-byte subtraction is simple, as
illustrated in Example B.

NOTE: OPR1, OPR2 and RSLT are the
most-significant bytes.

GENERAL ADDITION RULES

For addition, a correction of (+6) is required
if the sum of the most-significant digits or
least-significant digits exceeds 9. This is
accomplished by first adding an offset of
(+6) to each of the digits of the firstoperand
(addition of H'66’) and then adding the
second operand.

If the sum of the least-significant digits did
exceed 9, it now (including the (+6) correc-
tion) will exceed 15,5, (H’F’); an Interdigit
Carry will be generated. Ifan IDC is generat-
ed, the result is correct and, as shown in
Figure 2, the DAR instruction will have no
effect on the sum. If not, the (+6) correction
will be cancelled by adding 10 (equivalent to
subtracting 6). Correction of the most-
significant digit sum operates similarly, with
the C bit controlling the final correction.

Single-Byte Operands/Result:

If the 2650 is conditioned for arithmetic
without carry (WC = 0), addition can be
performed as shown in Example C.

In the case of arithmetic with carry (WC=1),
it should be noted that the addition of the
offset H'66’ may generate a carry (if OPR1 =
99 and carry was set); this carry will be
added during the addition of OPR2, giving
an incorrect sum.

Multiple-Byte Operands/Result:
WHen using multiple-byte operands, linking
of the bytes by means of the carry bit is
required. Hence, arithmetic with carry must
be performed (WC in PSL is set to 1). Be-
cause of the two successive additions (of
the offset H'66’ and of the second operand),
the problem mentioned in the previous sec-
tion can also arise here. Two straight-
forward solutions to this problem, listed be-
low, are illustrated in the flowchart of
Figure 3.

Method 1: In this method, each byte of the
first operand is first increased by the offset
H’'66’, after which addition of the second
operand is performed. See Example D.

2650 MICROPROCESSOR APPLICATIONS MEMO

PPSL (0] CLEAR BORROW
LODA,R3 OPR1 FETCH FIRST OPERAND
SUBA,R3 OPR2 SUBTRACT SECOND OPERAND
DAR,R3 DECIMAL ADJUST RESULT
STRA,R3 RSLT STORE RESULT
Example A
PPSL WC+C ARITHMETIC WITH CARRY, CLEAR BORROW
LODI,R3 LENG LOAD INDEX REGISTER
DSUL LODA,RO OPR1,R3,- FETCH BYTE OF OPERAND1
SUBA,RO OPR2,R3 SUBTRACT BYTE OF OPERAND?2
DAR,RO DECIMAL ADJUST RESULT
STRA,RO0 RSLT,R3 STORE RESULTING BYTE
BRNR,R3 DSUL CONTINUE LOOP IF NOT DONE
Example B
LODA,R3 OPR1 FETCH FIRST OPERAND
ADDI,R3 H'66’ ADD OFFSET FOR BCD ADD
ADDA,R3 OPR2 ADD SECOND OPERAND
DAR,R3 DECIMAL ADJUST RESULT
STRA,R3 RSLT STORE RESULT
Example C
CPSL C CLEAR CARRY
PPSL wcC ARITHMETIC WITH CARRY
LODI,R3 LENG LOAD INDEX REGISTER
ADDO LODA,RO OPR1,R3,- FETCH BYTE OF OPERAND1
ADDLRO H'66’ ADD OFFSET FOR BCD ADD
STRA,R0 RSLT,R3 STORE INTERMEDIATE RESULT
BRNR,R3 ADDO BRANCH IF ALL BYTES NOT READY
LODI,R3 LENG LOAD INDEX REGISTER
ADD1 LODA,RO RSLT,R3,- FETCHBYTE OF INTERMEDIATE SUM
ADDA,RO OPR2,R3 ADD BYTE OF OPERAND2
DAR,RO DECIMAL ADJUST RESULT
STRA,R0 RSLT,R3 STORE RESULT -
BRNR,R3 ADD1 BRANCH IF ALL BYTES NOT READY

Example D

sinotics

FIXED POINT DECIMAL ARITHMETIC ROUTINES

AS55

Method 2: In this method, the complete
addition is handled on a byte-by-byte basis.
This means that the true interbyte-carry
must be saved and restored, and the carry
must be cleared at the appropriate time.
This can be performed by using one addi-
tional register to retain the interbyte-carry.
See Example E.

The second method is faster and requires
fewer bytes of code (24 versus 30) but
requires an additional register.

The program listing of Figure 5 summarizes
the basic BCD addition and subtraction rou-
tines.

ROUTINES FOR SIGNED
INTEGER ARITHMETIC

There are several possible ways of repre-
senting signed decimal numbers. The best
known are ten’s complement notation and
sign-magnitude notation. The sign-
magnitude notation, illustrated in Figure 4,
is used here because it is easy to interpret
and lends itself to interfacing with peripher-
als. It is also simpler to use in multiplication,
division, and in aligning and rounding rou-
tines. The numbers are stored in memory in
the form of a sign followed by the absolute
value of the number.

The length of the numbers is defined by the
number of bytes (inciuding the sign byte)
they require. This parameter can be modifi-
ed by changing the definition of LENG in the
source program. Note that for clarity, each
routine is written in a “stand-alone” form. If
more than 1 routine is required in a pro-
gram, considerable savings in the program
space required can be realized by breaking
out common operations as subroutines.

2650 MICROPROCESSOR APPLICATIONS MEMO

CPSL C
PPSL WC
LODI,R3 LENG
LODI,R1 0

DADL LODA,RO OPR1,R3,-
ADDI, RO H66’
RRR,R1
ADDA,RO OPR2,R3
DAR,RO
STRA,RO RSLT,R3
RRL,R1
BRNR,R3 DADL

CLEAR CARRY

ARITHMETIC/ROTATE WITH CARRY
LOAD INDEX REGISTER
CLEARINTERBYTE-CARRY REGISTER
FETCH BYTE OF OPERAND1

ADD OFFSET FOR BCD ADD

RESTORE INTERBYTE-CARRY TO CARRY
ADD BYTE OF OPERAND2

DECIMAL ADJUST RESULT

STORE RESULT

SAVE INTERBYTE-CARRY INR1,CLEAR C
BRANCH IF NOT READY

Example E

GENERAL ADDITION FOR MULTIPLE-BYTE, UNSIGNED BCD NUMBERS

Enter DADD Enter ADDD
OPERATION:
OPERAND1 + OPERAND2 - RESULT
Method 2 Method 1
INITIALIZE PSL: INITIALIZE PSL:
« Clear carry « Clear carry

« Operations with carry

[Load index register

with length of operands.
Y

« Operation with carry

Load index register
with length of operands.

I Clear interbyte-carry.

——" DADL

Decrease index,
Fetch byte of OPR1,
indexed.

I Add H'66" offset.

1]

[Interbyte-carry — carry

I
Y

Add byte OPR2, indexed.

]

Decimal adjust result.

J -]

in RSLT, indexed,

Carry —= interbyte-carry

I Store resulting byte
[Clear carry.

|
J

All
bytes added
(index =02

RETURN

Figure 3

%ADDO

Decrease index
Fetch byte of OPR1,
indexed

Y
| Add H 66 offset.]

Store resulting byte
in RSLT, indexed.

All
bytes added
(index =0)?

Yes
Load index register
with length of operands

-——-————4ADD1

Decrease index.
Fetch byte of RSLT,
indexed

[Add byte of OPR2, indexed I
¥

l Decimal adjust result, l

Store resulting byte
in RSLT, indexed
No Al
bytes added

{index =G}

SIGN-MAGNITUDE NOTATION

sign magnitude
A~
r)
one byte (8 bits)
1 } I [
[+A|><!MSD[J: | [lr _ _ LSD
- ——
most-;?tt: fcant least-significant byte

~ .
least-significant BCD digit

most-significant BCD digit

not used

sign: H'O" is+, H'F’ is -

Figure 4

Sinotics

FIXED POINT DECIMAL ARITHMETIC ROUTINES

AS55

2650 MICROPROCESSOR APPLICATIONS MEMO

THIN RSSEMBLER YER 1.8

BCD ADDITION AND SUBTRACTION ROUTINES

PAGE 6661

LINE ADDR OBJECT E SOURCE

28

928z

2883

o064

8085

8066

aea7

8968

60609

aeie

014

012

8913

0814

8915 3660

6016 0661

8017 dee2

62318 8663

0019 6688

0620 661

0821 6803

6822

0823 6865

0824

6825 B0

8626

8627 6700

828 6765

6829 676A

6039

0031 a76F

8032

0633

6834

0035

0836

2637

0638 8450 BFE700
00939 8453 8766
8848 8455 oFe7ES
0041 8438 97
8842 8459 CFa76R
8843

0044

8645

0846

0847

6648

8849 845C ore7ee
0850 645F FFE7E5
8851 8462 97
6852 463 CFO7eA
0853

* FU760887

* DECIMAL ADDITION/SUBTRACTION FOR PRCKED-BCD *

* OPERATION: OPERANDL +/- OPERANDZ --> RESULT

* OPERANDL IS IN: OPRL. OPRi+1, OPR1+2Z, ETCY

* DPERANDZ 1S IN: OPRZ, OPR2+1, OPR2+2, ETC.

* RESULT IS IN: RSLT,RSLT+1,ROLT+2,ETC.

* OPR1, OPRZ AND RSLT ARE MOST-SIGNIFICANT BYTES.
* ALL NUMBERS ARE OF EQUAL LENGTH (IN BYTES).

* LENGTH IS DEFINED BY: LENG

*
+ DEFINITIONS OF SYMBOLS:
*

R6 EU 6 PROCESSOR REGISTERS
ROEW 1
R OEW 2
RS OB 3
WCOERU W88’ PSL: 1=KITH, E=KITHOUT CARRY
CEW Wet CRRY/BORROM
W OB 3 BRANCH CONDITION: UNCONDITIONAL
*
LENGEW 5 LENGTH OF OPERANDS/RESLLT IN BYTES
*
ORG W788' PARAMETERS
*
OFRL RES LENG OPERANDL
OPRZ RES LENG OPERANDZ
RSLT RES LENG RESWT

*
ORG H’450"
*

* ADDITION OF UNSIGNED, SINGLE-BYTE BCD NUMBERS *

* OPERATION: OPERANDL + OPERAND2 --> RESULT

*
ADD LODA, R3 OPRL FETCH FIRST OPERAND

ADDL, R3 H'667 AOD OFFSET FOR BCD ADD
ADDA, R OPR2 ADD SECOND OPERRND
DAR, R3 DECIMAL RDJUST RESULT
STRA, R3 RSLT STORE RESULT

*

* SUBTRACTION OF UNSIGNED, SINGLE-BYTE BCD NUMBERS *

* OPERATION: OPERANDL - OPERAND2 --> RESULT

*

SUBT LODA, R3 OPRL FETCH FIRST OPERAND
SUBA, R3 OPRZ SUBTRACT SECOND OPERAND
DAR, R3 DECIMAL ADJUST RESULT
STRA, R3 RSLT STORE RESULT

8866 8466 7561
661 8468 7768
9862 BAGH 8765
8863 846(8506
0064 BAGE OF4700
0665 8471 8466
0866 8473 51
6067 B474 SF67ES
8668 8477 94
8869 8475 CFS7eR
0676 8475 D1
8671 @47C 5678
a7z

0873

0874

0875

0676

877

8878

0879 B47E 7561
6339 8480 7768
G851 8482 8765
8852 B454 6F4700
0683 6487 8466
8884 8489 CF676A
0085 848C 5876
0886 B4SE 6765
0a57 8498 OF470R
8668 6493 SF67E5
6889 8496 34
8696 8497 CFe76A
0891 B49H SB74
8092

0093

8894

#0995

68%

0697

8898

8899 849C 7769
6160 649 8765
8161 B4R BF4760
6162 B4R AFETES
6163 B4A6 94
6184 @4R7 CFE76A
@165 B4AR SB74
8166

6187 0680

Figure 5

TWIN ASSEMBLER VER 1@

FAGE Ba62

LINE FDOR OBJECT E SOURCE

* ADDITION OF UNSIGNED MULTIPLE-BYTE BLD NUMBERS

* OPERATION: OPERANDL + OPERANDZ --> RESULT
*

DADD CPSL € CLEAR CARRY
PPSL W ARITHMETIC/ROTATE WITH CARRY
LODL, K3 LENG LOAD INDEX REGISTER
LODL kL B CLEAR INTERBYTE-CARRY

DADL LODA, Ré OPR1, k3, - FETCH BYTE OF OPERANDL

ADDI, RE H€6” ADD OFFSET FOR BLD ADD
RRR, R RESTORE INTERBYTE-CHRRY TO ©
ADDA, kB OPRZ,RT ADD BYTE OF OPERANDZ
DR, R OECIMAL RDJUST RESULT
STRA, R® RSLT, R STORE RESULTING BYTE
RKL, RL SAVE INTERBYTE-CARRY IN Ri, CLEAR C
BRNR, R3 DADL BRANCH IF NOT RERDY
*
* ADDITION OF UNSIGNED MULTIPLE-BYTE BCD NUMBERS *
* ALTERNATE METHOD *
* OPERATION: OPERANDL + OFERANDZ --> RESUWLT
*
ADDD CPSL € CLEAR CARRY
FPSL W ARITHMETIC WITH CARRY
LODL, K3 LENG LOAD INDEX REGISTER

ADDO LODA, k@ OPR1, R3, - FETCH BYTE OF OPERANDL

ADDT, R@ H 667 ADD OFFSET FOR BCD-ADD

STRA, R8 RSLT,RZ STORE INTERMEDIATE RESILT
BRNK, RS ADDG BRANCH IF ALL BYTES NOT RERDY
LODI, RS LENG LOAD INDEX REGISTER

ADDL LODA, k@ RSLT.R3, - FETCH BYTE OF INTERMEDIATE SUM
ADDA, Ré OPRZ,R3 ADD BYTE OF OPERRNDZ
DAR, RG DECIMAL ADJUST RESULT
STRA, RB RSLT, K3 STORE RESULT
* BRNR, R3 ADDA ERANCH IF ALL BYTES NOT RERDY
*
*

* SUBTRACTION OF UNSIGNED MULTIPLE-EYTE BCD NUMBERS

* OPERATION: OPERANDL - OPERANDZ --> RESULT
*
DSUB PPSL WC+C ARITHMETIC WITH CARRY, CLERR BORROMW
LOD1, R3 LENG LOAD INDEX REGISTER
DSUL LODA, RE OPR1, R3, - FETCH BYTE OF OPERRNDL
SUBA, k6 OPR2, K3 SUBTRACT BYTE OF OPERANDZ
DAR, ke DECIMAL ADJUST RESULT
STRA, KRB RSLT,R3 STORE RESULTING BYTE
BRNR; RS DSUL BRANCH IF NOT READY

END [}

TOTAL RSSEMELY ERRORS = 8ous

Sinotics

FIXED POINT DECIMAL ARITHMETIC ROUTINES AS55

2650 MICROPROCESSOR APPLICATIONS MEMO

Program Title FLOWCHART FOR DECIMAL

DECIMAL ADDITION/SUBTRACTION ADDITION/SUBTRACTION FOR SIGNED INTEGERS
FOR SIGNED INTEGERS (PACKED BCD)

Function Enter SGAD Enter SGSU

Addition or subtraction of 2 decimal inte-
gers in sign-magnitude notation. Operands
and result are of equal length, as defined by

L CHANGE SIGN OPR2 J
T

LENG. SGAD Operations:
OINIT!ALIZE:SL: SGAD: OPR1+ OPR2*»0OPR2
. ti th cal . -
OPERAND1 +/- OPERAND2»OPERAND2 ogical comparison SGSU: OPR1—OPR2>-0PR2
e Clear borrow

Parameters
Input: 4<0\,

Length of numbers (in bytes) is defined by
LENG.

[+SIGN TO RESULT I +SIGN TO RESULT J

OPR1, OPR1+1, OPR1+2, etc., contain au- TBLO
gend or subtrahend. @lﬁ'
OPR2, OPR2+1, OPR2+2, etc., contain ad- <

. o]
dend or minuend. I _SIGN TO RESULT I
Output: ADD y* —
OPR2, OPR2+1, OPR2+2, etc., contain sum Clear carry
or difference. /OPR1/ + /OPR2/—~RESULT Note: /OPR1/ = magnitude

of OPR1.

Overflow is detected.

OPERATION <
Subtraction is performed by changing the

sign of the second operand before entering
the signed addition routine. Prior to adding
or subtracting the sign of the result must be s
At nvmaioa Thia raciiiraa a namnariann of

Ut:l\;'lllllllcu 1S lcqullca a Lvuitipaiiouvil vi YNO YNO
the magnitudes of both operands if they 510N T0 RESULT I l Y ——— J
have opposite signs. In this case, the subtra-

N |
hend and minuend for the operation are also eL1 §< y LBLs3
designated by the comparison. l;m/-/omz/—onesuur /OPR2/ — /OPR1/—>RESULT
Refer to Figures 6 and 7 for flowchart and i Ili
program listing.

Figure 6
HARDWARE AFFECTED
REGISTERS RO R1 R2 R3 R1’ R2 | R3 RAM REQUIRED (BYTES): 2 X LENG
X X X ROM REQUIRED (BYTES): 127
PSU] SP MAXIMUM SUBROUTINE
NESTING LEVELS: 1
PSL ‘cC | IpDC| RS | WC | OVF|com| C ASSEMBLER/COMPILER USED: TWIN VER 1.0
X X X X X X

6 sifnotics

FIXED POINT DECIMAL ARITHMETIC ROUTINES AS55

2650 MICROPROCESSOR APPLICATIONS MEMO

DECIMAL ADDITION/SUBTRACTION FOR SIGNED INTEGERS

THIN RSSEMBLER. VER 1.8 PRGE 0081
LINE ADDR OBJECT E SOURCE
001 * PD768B8S 8667 B51R 7706 SGAD PPSL WCHCOM+C OPERATIONS WITH CARRY,
6062 8065 * LOGICAL COMPARE, CLEAR BURROW.
2003 * DECIMAL AODITION/SUBTRACTION FOR SIGNED-INTEGERS 9069 6510 20 ERZ R® CLEAR K8
8604 * NUMBERS ARE IN PACKED BCD, SIGN-MAGNITUDE NOTRTION * 0676 851D 606765 LODR, RL OFR2 FETCH SIGN OF OPERANDZ
685 0071 8526 (L8705 STRR, kB OPRZ CLEAR SIGN OF OPERAND2 (=RESULT)
0086 * DPERATION: OFERANDL +/- OPERAND2 --> OPERANDZ o872 6523 923 BCFR,N LEL® BRANCH IF OPR2 NOT NEGATIVE
687 * OPERANDL IS IN: OPRL, OPR1+1, OPR1+2, ETC @073 6525 BCaTe0 LODA, RS OPRL FETCH SIGN OF OPERANDL
6068 * OFERAND2 IS IN: OPRZ, OPR2+L, OFR2+2, ETC. 8074 8528 9ASC BCFR.N LBLZ BRANCH IF OPRL NOT NEGATIVE
6065 * SUN/DIFFERENCE IS IN: OFRZ, OPR2+1, OPR2+2, ETC. @975 B52R B4F LODI, kG H'FB’ FETCH MINUS SIGN
6818 * OPERANDZ 15 DESTROYED AFTER ADD/SUBTRACT 876 B52C (CH785 STRA, KB OPR2 STORE IN MS-BYTE RESULT
611 * OPRL, OPR2 FIRE MOST-SIGNIFICANT BYTES 8077 *
8612 * LENGTH OF NUMBERS (IN BYTES) 1S DEFINED BY: LENG #0678 852F 7561 ADD CPSL € OPRL + OPRZ —> OPR2,
[k * ALLOWED RANGE: 1 C LENG ¢ 255. @879 * CLEAR CARRY.
8014 * MS BYTE HOLDS SIGN INFORMATION: H'98’ FOR + H ‘F@’ FOR - @056 8531 0784 LODI, RS LENG-1 LOAD INDEX REGISTER
6015 * 8681 8533 @560 LODL,RL @ CLEAR INTERBYTE-CARRY
@16 * DEFINITIONS OF SYMBOLS 0882 6535 6780 ADDE LODA, R@ OPRLRI FETCH BYTE OF OPERANDL
8017 * 8883 0538 8466 ADDI, RO H'66° ADD OFFSET
0818 0600 R EW 8 PROCESSOR REGISTERS 8884 653A 51 RRR, ki INTERBYTE-CARRY TO CARRY
8819 oo OB i 985 6538 §F6705 FADDR, R@ OPR2,R3 ADD BYTE OF OPERANDZ
6029 oGz Rz EW 2 0886 B53E 94 DAR, RG DECIMAL ADJUST RESULT
6821 803 R3EU 3 @387 @53F CFE785 STRA,R@ OPRZ,R3 STORE RESULTING BYTE
6022 5968 W EU H'88" PSL: 1=HITH, @=WITHOUT CARRY 6488 8542 Di RRL, R1 CARRY (=INTERBYTE-CARRY) TO Ri
6623 9082 COM EW HEe 1=L0GIC, 6=ARITH. COMPARE @889 * CLEAR CARRY.
8624 0601 ¢ B we CARRY/ZBORROW @999 8543 FE70 BORR, RS ADDB BRANCH IF NOT READY
6025 600 Z e BRANCH CONDITION: ZERO 8091 6545 9838 BCFR, 2 OVFL BRANCH IF OVERFLOW
006 8062 NoOEW 2 NEGRTIVE 8992 8547 17 RETC, N RETURN
8027 0600 EQ EW 8 EQUAL 9093 *
0608 0081 6T EW 1 GREATER THAN
8629 A62 [N TR LESS THAN
0630 0063 W OEU 3 UNCONDITIONAL
6031 *
8032 * PARAMETERS *
8033 *
2034 0665 LENG EU 5 LENGTH OF OPERANDS C(IN BYTES)
8635 * TWIN ASSEMBLER VER 1 @ FRGE 6063
6636 @060 RG H/708"
o437 * LINE ADDR OBJECT E SGURCE
8936 6700 OPRL RES LENG OPERANDL
8639 6765 OFRZ RES LENG OPERANDZ/RESULT 6055 €545 BCETER LEL® LODR, RO OFR1 FETCH SIGN OF OFERFNDL
8646 * @996 B54E 9R62 BCFR,N ADD ERFNCH IF OPRL NOT NEGATIVE
8041 0700 OKG H/508’ @097 854D IFA5HE BSTA, UN COL2 COMFFRE OPRL WITH OFRZ,
840 * 2098 * CHAGNITUDES ONLY)
9543 @899 8556 I91E BUFR, GT LELY BRANCH IF OFRL < OR = TO OFRZ
o044 * SUBROUTINE TO COMFFARE OPERANDL WITH OPERAND2 (UPDATE CC) * 8160 6552 B4F@ LODI.RG H'FB’ FETCH MINUS SIGN
6045 8191 8554 TLA7ES STRR, k8 DFRZ STORE IN NS-BYTE RESULT
8046 8566 €560 012 LODL KL © CLEAR RL MS BITS ARE USED TO SAVE CC DATA 4182 *
8647 8562 6704 LODI,R3 LENG-1 LOAD INDEX REG 8193 * OFRL - OFFZ --> OFRZ
8045 6504 GFG706 COMO LODA,RG OPRL KX FETCH BYTE OF OPERANDL 6164 8557 9764 LBLY LODI,R3 LENG-1 LOAD INDEX REGISTER
8849 8587 EF6785 COMA, RB OPR2,R3 COMPARE WITH BYTE OF OPERANDZ 6165 @559 OF67A8 SUL2 LODR,R@ OPRL,F3 FETCH BYTE OF OPERANDL
8850 856A 1862 BCTR, EQ COML BRANCH IF EQUAL 8106 B55C AF67B5 SUBR, k8 OFRZ, R SUBTRACT EYTE OF OPERFNDZ
6351 856C 13 SPSL PSL T0 R8 @167 055F 34 DAR, k8 DECIMAL FOJUST RESULT
@652 650 (1 ST K SAVE PSL IN RL 8108 8560 CF67E5 STRA, KB OPRZ, KT STORE RESULTING BYTE IN OPRZ
#9453 650E FE74 COML BORR, R3 COMG BRANCH IF ALL BYTES NOT TESTED @189 8563 FE74 BDRR, k3 SUL2 BRANCH IF NOT REFDY
8054 6516 61 Lz Rt UPDATE CC WITH STRTUS COMPARE 6116 8565 17 RETC, UN RETURN
@55 8511 17 FETC, N RETURN 111 *
0056 * 8112 8566 FBS6E LBLZ BSTA UN (012 COMPRRE OFRL WITH OPRZ,
8113 * ' C(MAGNITUDES ONLY)
8114 8569 L BCFR, LT LBLL BRANCH IF OPRL > OR = OFRZ
8115 8568 B4FD LODL,RB H'FB’ FETCH MINUS SIGN
8116 656D CLa76S STRA, ke OPRZ STORE IN MS-BYTE OF RESULT
8117 *
THIN RSSEMBLER VER 1.8 PRGE 0862 8118 * UPRZ - OFRL -=> OPRZ
8119 8576 6764 LELZ LODI,RY LENG-1 LOAD INDEX REGISTER
LINE ADDR OBJECT E SOURCE @120 6572 @F6765 SU24 LODA,R® OPRZ R FETCH EYTE OF OPERANDZ
8121 8575 FF6708 SUBA, RS OPR1,R3 SUBTRACT BYTE OF CPERANDL
4057 * 8122 8578 %4 DFR, k8 DECIMAL RDJUST RESULT
2056 8123 @579 CF6785 STRA,RB OFRZ, R STORE RESULTING BYTE
@059 * SUBTRACTION FOR SIGNED INTEGERS * 8124 857C FB74 BORR, K3 SU2L BRANCH IF NOT RERDY
4060 6125 057E 17 RETC, UN RETURN
9861 6512 BCATES SGSU LODR, RE OPRZ FETCH SIGN OF OPERAND2 6126 *
062 @515 24F9 EORI, R8 H’F8’ CHANGE. SIGN @127 @57F 40 OVFL HALT ARTTHMETIC OVERFLOW
8963 8517 (L6705 STRA, R OPRZ RESTORE SIGN OF OPERAND2 8128 *
964 0129 600 END @
8965 * ADDITION FOR SIGNED INTEGERS *
0666 » TOTAL ASSEMELY ERRORS = 6660
Figure 7

sifnotics 7

FIXED POINT DECIMAL ARITHMETIC ROUTINES AS55

2650 MICROPROCESSOR APPLICATIONS MEMO

Program Title

DECIMAL MULTIPLICATION FOR FLOWCHART FOR DECIMAL MULTIPLICATION OF
SIGNED INTEGERS (PACKED BCD) SIGNED INTEGERS (PACKED BCD)
FUNCTION

Multiplication of 2 decimal integers in sign-
magnitude notation.

Multiplicand, multiplier, and product are of
equal length as defined by LENG.

Enter SGMP
MULTIPLICAND X MULTIPLIER ¥ MUL- V OPERATION: MPLC x MPLR—»MPLR
TIPLIER
INITIALIZE PSL:
Parameters < iogical compare multiplicand
Sign MPLC ® sign MPLR _
Input: —>SIGN MSD LSD
i i i - MSD _ LSD MSD _ LSD
t‘érr]\jgé.h of numbers (in bytes) is defined by Cloar e)ﬁ?:d:(;glt\‘/lPMLPFl{(EMPR)j [B 3
: —_——— —
MPLC, MPLC+1, MPLC+2, etc., contain [zxieno—rz | oxtanded i
multiplicand. NXDG
L east- slgmflcant dlglt product
MPLR, MPLR+1, MPLR+2, etc., contain mul- ofMFLA ;’DMC
tiplier.
Output:
MPLR, MPLR+1, MPLR+2, etc., contain .
product. (MPLC)+(EMPR)—>EMPR | + without sign byte
Multiplier is destroyed after multiplication. l (R1)— 1—-—>R1 |
Overflow is detected.
OPERATION SHRG
Prior to the multiplication algorithm (which l)]
is an unsigned operation), the sign of the
product is determined. The multiplication [ma-1—ere]
gives a double-length result, of which only
the least-significant half is retained as the No @ yes
product. If the most-significant half is une- AT
qual to zero, an overflow is detected. A (EMP;;“ r pove Ms:mMPLR
“minus-zero” is excluded by means of a test ér MS-byte No u l
for zero product. weLRO? DE—
Refer to Figures 8 and 9 for flowchart and
program listing.
Figure 8
HARDWARE AFFECTED
Ro | R1 R2 R3 R’ Rz | R3 RAM REQUIRED (BYTES): (8 X LENG) + 1
REGISTERS X X X X ROM REQUIRED (BYTES): 111
F T sP MAXIMUM SUBROUTINE
PSU NESTING LEVELS: None
PSL CC |IDC | RS | WC | OVF |[COM | C ASSEMBLER/COMPILER USED: TWIN VER 1.0
X X X X X X

8 sifnotics

FIXED POINT DECIMAL ARITHMETIC ROUTINES AS55

2650 MICROPROCESSOR APPLICATIONS MEMO

DECIMAL MULTIPLICATION FOR SIGNED INTEGERS

TWIN RSSEMBLER VER 1 8 PRGE 6661

LINE RDDR OBJECT E SOURCE

(25
[
66803
B

0021 BBB3
@922 Beas
0023 poaz
#0824 061
8025 Baas
826 6983

8935 9785

6936 87en

837

938

0039 670F

0848

8841

8042 6716

8343

8644

8845 8560 776A
8646 056z BLB760
0847 9585 2C87en
4948 8568 (Corer
0049 @568 26
6656 6580 6706
8851 BS6E CF4785
8952 6511 SB7B
653 8513 866R
0854 6515 9DBTEE
0855 @518 456F
0856 B51A 1826

* PD76668E5

* DECIMAL MULTIPLICATION FOR SIGNED-INTEGERS. *
* NUMBERS ARE IN PACKED BCD, SIGN-MAGNITUDE NOTATION *

* OPERATION: MULTIPLICAND X MULTIPLIER --> MULTIPLIER

+ MATIPLICAND 1S IN: MPLC, MPLOCHL, MPLT#2Z, ETC

* MULTIPLIER 15 IN: MPLR, MPLR+1, MPLR+2, ETC.
* PRODUCT IS IN: MPLR, WPLR+L, MPLR#2, ETC.

* MULTIPLIER 1S DESTROVED AFTER MULTIFLICATION

* WPLC, WPLR ARE MOST-SIGNIFICANT BYTES.

* LENGTH OF NUMBERS (IN BYTES) 15 DEFINED BY: LENG
% ALLONED RANGE: 1 < LENG < 85, .

* MG ENTE REPRESENTS SIGN: H’66” FOR +, H'F&* FOR -

*
* DEFINITIONS OF SYMBOLS:
*

ke EW] PROCESSOR-REGISTERS
kL EQU 1
k2 EW 2
k3 EQU 3
W EQU H'eg’ PSL: 1=WITH, @=WITHOUT CARRY
M EW He2’ 1=L0GIC, @=ARITH COMPARE
[Het’ CARRY/BORROW
Z EW a BRANCH CONDITION: ZERO
W EW 3 UNCONDITIONAL
*
* PARAMETERS *
*
LENG EQU S LENGTH OF OPERANDS (BYTES)
*
ORG H'768"

*
WPLC RES LENG MULTIPLICAND

EMPR RES LENG EXTENDED MULTIPLIER
MPLR RES LENG MULTIPLIER

* NOTE: EMPR FND MPLR MUST BE IN SUCCESSIVE

* RAM LOCATIONS FOR DOUBLE-LENGTH SHIFT.

SIGN RES 1 TEMPORARY SIGN

*

* FHARIARAR AR AARR R AR
ORG H°588° % MULTIPLICATION PROGRAM *

* FRRRRIORRRR ORIk

*

SGMP PPSL WC+COM OPERATIONS WITH CARRY, LOGICAL COMPARE

LODA, Re MPLC FETCH SIGN MULTIPLICAND
EORA, RE MPLR TAKE EX-OR WITH SIGN MULTIPLIER
STRA, R SIGN SRYE PRODUCT SIGN IN SIGN

EORZ k@ CLERR R8

LODL, R3 LENGH. LOAD INDEX REGISTER

CLEM STRA,R@ EMPR, R3, - CLEAR EXTENDED MULTIPLIER AND SIGN OF MULTIPLIER

BRNK, R3 CLEM BRANCH IF NOT DONE

LODI, R2 LENGH.ENG LOAD LOOP COUNTER WITH NUMBER OF DIGITS

NXDG LODA, R1 MPLRHLENG-1 FETCH LS-BYTE MULTIPLIER
ANDI, RL H'BF/ CLEAR MS-DIGIT
BCTR, Z SHRG BRANCH IF LS-DIGIT IS ZERU

THIN ASSEMBLER YER 1. @ PHGE 8002

LINE ADDR OBJECT E SOURCE

8858 * ADD MULTIFLICAND TO EXTENDED
@659 * MULTIPLIER WITHOUT SIGN
6860 51C 7581 ADMC CPSL € CLEAR CARRY

6661 8S1E 6704 LODI, R3 LENG-1 LOAD INDEX REGISTER

BB62 8520 BF6765 FDM@ LODA, R EMPR,RZ FETCH BYTE OF EXTENDED MULTIPLIEK
P63 6523 8466 RDD1, kB H’66° ADD OFFSET FOR DECIMAL ADJUST
6864 8525 CF6785 STRA, Re EMPR, RS RESTORE INTERMEDIATE SUM

#0965 8526 FB76 EDRK, R3 ADMO BRANCH IF ALL BYTES NOT READY
066 652A 6704 LODI, R3 LENG-1 LOAD INDEX REGISTER

@867 @52C OF 6765 ADML LODA, RG EMFR,R3 FETCH BYTE OF INTERMEDIATE SUM
6865 652F BF6700 ADDA, R8 MFLC, R ADD BYTE OF MULTIFLICAND

969 8532 %4 DAk, RO DECIMAL RDJUST RESULT

8870 6533 (F6765 STRA, RG EMPR.R3 STORE RESULTING BYTE

6071 6526 FB74 BORR, K3 AOML BRANCH IF NOT RERDY

a7z ga38 eCeres LODA, k& EMPR FETCH MS-BYTE EXTENDED MULTIFLIER
0873 @536 8460 fDL. RO 6 fiDD CARRY

0674 @530 CCBres STRA, RG EMPR RESTORE MS-BYTE EXTENDED MULTIPLIER
8875 8546 FI5A BORR. R1 ADMC BRANCH IF NOT READY WITH DIGIT
6876 *

0677 * SHIFT EMPR AND MPLR ONE DIGIT
0678 * POSITION RIGHT (4 BITS)
6879 @542 4564 SHRG LODI,R1 4 LOAD LOOP COUNTER

0689 @544 7501 SHO CPSL C CLEAR CARRY

6881 8546 @7F6 LODI, K3 -LENG-LENG LOAD INDEX REGISTER

9882 8545 OF 66aF SHR1 LODA, R® EMPR-ZS6+LENGHLENG, R3 FETCH BYTE OF EXTENDED MULTIPLIER
8853 @548 56 RRR, R@ ROTATE RIGHT WITH CARRY

@384 @540 CF66eF STRA, RG EMPR-256+LENGHLENG, R3 RESTORE BYTE

0685 BS4F DB77 BIRK R3 SHR1 BRANCH TF ALL NOT SHIFTED

8836 8551 FI71 BDRR, R1 SHR® BRANCH IF 4 BITS NOT SHIFTED
8687 *

6938 9553 FRd0 BORR, RZ NXDG BRANCH IF ALL DIGITS NOT READY
6883 *

8% * TEST FOR OVERFLOM; OVERFLOW IF
891 * (EMPR) OR MS—BYTE MFLR ARE UNEQUAL TO ZERD
8892 8555 @786 LODI,R3 LENG*L LOAD INDEX REGISTER

6893 8557 BF4765 TOVF LODA. RB EMPR, RS, - FETCH BYTE OF EXTENDED MPLR
8694 BS5A 9813 BCFR, 2 OVFL ERANCH IF NOT ZERO

#0895 655C 5679 BRNR, R3 TOVF BRANCH IF ALL BYTES NOT TESTED
8896 B35E 6764 LODI,R3 LENG-1 TEST IF PRODUCT=6; LORD INDEX
8897 6566 OF67OR TZER LODA, R MPLK,R3 FETCH BYTE OF FRODUCT

@896 8563 9883 BCFK, 2 ASME BRANCH IF NOT ZERO

0699 8565 FBT9 BORR, K3 TZER BRANCH IF ALL BYTES NOT TESTED
6106 @567 17 RETC, N PRODUCT=8; SIGN KEMAINS ZEROC.
[2T *

6162 8563 eCaver ASME LODA, RB SIGN FETCH PRODUCT SIGN

6163 8568 CCB76A STRA, RE MPLR STORE IN MS-BYTE MPLR

@184 BS6E 17 RETC, UN RETURN

6165 *

6186 656F 46 OVFL HALT ARITHMETIC OVERFLOW

o167 *

6106 0098 END 8

TOTAL ASSEMELY ERRORS = 8686

Figure 9

Sil[notics 9

FIXED POINT DECIMAL ARITHMETIC ROUTINES ‘ AS55

Program Title

DECIMAL DIVISION FOR SIGNED
INTEGERS (PACKED BCD)

Function
Division of 2 decimal integers in sign-
magnitude notation.

Dividend, divisor, quotient, and remainder
are of equal length as defined by LENG.

DIVIDEND: DIVISOR =9 DIVIDEND,
REMAINDER

Parameters

Input:
Length of numbers (in bytes) is defined by
LENG.

DVDN, DVDN+1, DVDN+2, etc., contain div-
idend.

DVSR, DVSR+1, DVSR+2, etc., contain divi-
sor.

Output:
DVDN, DVDN+1, DVDN+2, etc., contain
quotient.

RMDR, RMDR+1, RMDR+2, etc., contain
remainder.

Dividend is destroyed after division.

Overflow is detected.

OPERATION:

Prior to the division, which in itself is an
unsigned operation, the signs of the remain-
der and quotient are determined. Because
the division can result in a zero quotient
and/or remainder, the possibility of a “mi-
nus zero” is excluded by tests. If the divisor
is zero, overflow is detected.

Refer to Figures 10 and 11 for flowchart and
program listing.

2650 MICROPROCESSOR APPLICATIONS MEMO

FLOWCHART FOR DECIMAL DIVISION OF SIGNED INTEGERS

Enter SGDV
OPERATION: DVDN:DVSR = DVDN, RMDR
INITIALIZE PSL:
« operations with carry Notes:
« logical compare * = excluding sign-byte
Yes -
OVERFLOW divisor
———
No _ _
Sign DVDN ~ RSGN MSD LSD

ISlgn DVDN®Sign DVSR-+QSGN| MSD LSD MSD LsD

Y
I Clear sign DVDN 7 I 2

Clear remainder RMDR

remainder dividend
[2x LENG ~ R2 |

quotient

|

SHFL ¥
Shift RMDR, DVDN

one digit left (4 bits).
0O+ LSD of DVDN

NXDG
I(RMDR)‘V(DVSR)‘*RMDR*—I I (R2)-1~ R2 —l

[(DVDN) + 1~ DVDN I

[+=mSbyte DVDN | [(asGN) = ms-byteDVDN_|
L ¥

Y
= <JRMDR/ =0?

No
[++=wsbyte RMDR | [(RsGN) = ms-byte RMDR]

(' RETURN) RETURN

Figure 10
HARDWARE AFFECTED
- S v T e | PAM REQUIRED (BYTES): (3 x LENG) + 4
REGISTERS | ') RX1 Nl B R2 ROM REQUIRED (BYTES): 144
n | sP MAXIMUM SUBROUTINE
PSU NESTING LEVELS: 1
cc | bc| Rs | wc | ovF [com| Cc | ASSEMBLER/COMPILER USED: TWIN VER 1.0
PSL
X | x X | x | x | x
10 Sinptics

FIXED POINT DECIMAL ARITHMETIC ROUTINES

AS55

2650 MICROPROCESSOR APPLICATIONS MEMO

THIN ASSEMBLER VER 1. 8

DECIMAL DIVISION FOR SIGNED INTEGERS

PRGE 0061

LINE RODR (OBJECT E SOURCE

80881
6882
0883
0064
0085
8886

0827 0008
0928 0601
0829 0082
06308 0008
6831 0082
0832 6883
8833
8034
2033
8036 6085
6837
6638 0606
8839
6040 0700
0841 8785
0842
0943
8344 876A
6045 87eF
0846 8711
8047 0712
0848

THIN ASSEMBLER VER 1.6

* PD766854

* DECIMAL DIVISION FOR SIGNED INTEGERS *
* NUMBERS FRE IN PRCKED BCD, SIGN-MAGNITUDE NOTRTION *

* OPERATION:

* DIVIDEND : DIVISOR --> DIYIDEND, REMAINDER

* DIVIDEND IS IN: DVDN, DVON+1, DYDN+2, ETC.

* DIVISOR IS IN: DYSR, DVSR+1, DYSR+2, ETC.

* QUOTIENT IS IN: DVDN, DVDN+1, DYDN+2, ETC.

* REMAINDER IS IN: RMDR, RMDR+1, RMDR+2, ETC.

* DIVIDEND 1S DESTROVED AFTER DIVISION.

* DVDN, DYSR AND RMDR ARE MOST-SIGNIFICANT BYTES.

* LENGTH OF NUMBERS (IN BYTES) IS DEFINED BY: LENG
* ALLOWED RANGE: 1 < LENG 65.

* MS-BYTE HOLDS SIGN INFORMATION: H’08° FOR +, H’F@’ FOR -

*
* DEFINITIONS OF SYMBOLS
*

LINE ADDR OBJECT E SOURCE

0858 8713

8051

8852

6853

8654

0855

6656

857

0658

8859 8508 CCarer
6860 6593 CDE716
#8641 0566 8764
0662 @568 GFETEF
6863 0508 15
6864 058C 16
8065 658D FB79
0866 B5OF 17
8867

8868

869

876

0871

0872 @516 776A
6873

0074 @512 8407
8875 8514 856A

Re EQU (] PROCESSOR REGISTERS
ROEW 1
ke EQ 2
RZ EW 3
W EW H'88" PSL: 1=RITH, B=NITHOUT CARRY
oM EQU W8z’ 1=L0GIC, B=ARITH COMPARE
C e Het’ CARRY/BORROW
Z Ew] BRANCH COND. : ZERO
P EQ 1 POSITIVE
N EW 2 NEGATIVE
EQ EQU 8 EQUAL
LT E 2 LESS THAN
N EQU 3 UNCONDITIONAL
*
* PARAMETERS *
*
LENG EQU S LENGTH OF OPERANDS (IN BYTES)
*
RG H'788’
*
RMOR RES LENG REMAINDER
DVON RES LENG DIVIDEND
* NOTE: RMOR AND DYDN MUST BE IN SUCCESSIVE
* RAM LOCATIONS, BECAUSE OF DOUBLE-LENGTH SHIFT.
DYSR RES LENG DIVISOR
TEMP RES 2 TEMPORARY STORAGE FOR ADDRESS
@SGN RES 1 QUOTIENT SIGN
RSGN RES 1 REMAINDER SIGN
*
PRGE 6062
ORG H'50e’

*

* SUBROUTINE TO TEST OPERAND FOR ZERD *

* OPERAND RDDRESS MUST BE IN R8,Ri (HIGH LOW ADDR.)
* ALL BYTES, EXCEPT MS-BYTE (=SIGN) ARE TESTED.

* CONDITION CODE BECOMES 8@ IF OPERAND WAS ZERO.

* -

TZER STRA, RG TEMP SRYE OPERAND RDDRESS

STRA, RL TEMP+L
LODI, R3 LENG-1 LOAD INDEX REGISTER

TZE® LODA, R@ *TEMP, RZ FETCH BYTE OF OPERAND
RETC,P RETURN IF POSITIVE (CC-@1)
RETC,N RETURN IF NEGATIVE (CC=18)
BDRR, R3 TZE® BRANCH IF ALL NOT TESTED
RETC, N RETURN WITH CC=00

*

* FREERE R

* * DIVISION PROGRAM *

* PR

*

SGDV PPSL WC+COM OPERATIONS WITH CARRY,

* LOGICAL COMPARISON.
LODI, R® <DVSK HIGH-RDDRESS DIVISOR T0 R
LODI, RL DDVSR LOW- ADDRESS DIVISOR TO Ri

Figure 11

8976 8516 3FEced BSTR, UN TZER TEST DIVISOR FOR ZERO

8677 8519 108595 BCTA, 2 OVFL BRANCH IF ZERO

8676 851C 8Ce785 LODA, R8 DVDN FETCH SIGN DIVIDEND

0879 BS1F CCa7iz STRA, R8 RSGN SAVE IN REMAINDER SIGN

8888 8522 20870 EORA, kB DVSR TAKE EX-OR WITH DYSR SIGN
@881 6525 Clevil STRA, k@ GSGN SAYE IN QUOTIENT SIGN

8882 €528 20 EORZ k@ CLEAR RO

8683 @529 6706 LODI,R3 LENGt1 LOAD INDEX REGISTER

6884 8528 CF470@ CLKM STRA, R@ RMDR, R3, - CLEAR REMAINDER AND SIGN DVDN
8885 852t 5878 BRNR, R3 CLRM BRANCH IF NOT DONE

0886 *

6087 8536 060A LODI, R2 LENG+LENG NUMBER OF DIGITS TO LOOP COUNTER
0888 *

0689 * SHIFT RMDR/DVDN 4 BITS LEFT
6898 * INSERTING ZERUES IN L5-BITS
0891 @532 @564 SHFL LODI,R1 4 LOAD BIT COUNTER

8892 8534 7561 SHFe CPSL C CLEAR CARRY

0893 @526 @7eA LODL, R3 LENGHENG LORD INDEX REGISTER

0894 8538 6F4700 SHF1 LODA, K@ RMDR, R3, - FETCH BYTE OF RMOR/DVDN

0695 8538 00 RKL, RO ROTATE LEFT WITH CARRY

8996 653C (Fe7ee STRA, R@ RMOR,R3 RESTORE SHIFTED BYTE

6897 @S3F 5877 ERNR, R3 SHFL BRANCH IF ALL NOT SHIFTED
8098 @541 F971 BORR, R SHFB BRANCH IF 4 BITS NOT SHIFTED

TWIN RSSEMBLEF VER 1 & FAGE @083

LINE ADDR OBJECT E SOURCE

6166 * COMPARE FMOR AND DVSR TO TEST
[* IF SUBTRACTION 1S POSSIBLE.
91682 8543 456 COMP LODLLFL & CLEAR R4; MS-BIT OF Ri BECOMES
a163 * 1 FiR RMDR < DVSR.

6104 @545 6794 LODL, B3 LENG-1 LOAD INDEX REGISTER

4105 4547 BFET08 COMG LODA, k6 RMDR, BX FETCH BYTE OF REMAINDER

6106 854A EFETER COMA. k@ DYSK. RZ COMPARE WITH BYTE OF DIYISOR
6167 854D 1862 BCTR, EQ COML ERANCH IF EQUAL

6166 654F 13 SPSL FSL TO ke

8189 8556 (1 STRZ KL SAVE PSL IN KL

0110 8551 FE74 COML BOFR, R COMB BRANCH IF ALL BYTES NOT TESTED
@111 @553 61 Lz R4 FETCH STATUS OF COMPARISON
8112 @554 1A1A ECTR, LT HXDG BRANCH IF RMOR < DVSR

6113 *

6114 * SUBTRACT DIVISOR FROM

115 * REMATNDER WITHOUT MS-BYTES;
6116 8556 7781 PPSL C CLEAR BORROW

0117 6958 8784 LODT, k3 LENG-1 LOAD INDEX REGISTER

8118 BSSH BF6760 SURD LODA, k@ RMDR,RZ FETCH BYTE OF REMAINDER

6119 8550 AF67ER SUBA, k@ DYSR,RZ SUBTRACT BYTE OF DIVISOR
6126 8560 34 DAR, k8 DECIMAL FDJUST RESULT

6121 @561 Cre70e STRR, kB RMDR, K3 RESTORE IN REMAINDER

6122 @564 FB74 BORR, R3 SURD BRANCH IF NOT READY

6123 *

@124 8566 BLA7EY LODA, RG DVDN+LENG-1 FETCH LS-BYTE QUOTIENT
6125 @569 D80 BIRR. KB $+2 INCREASE Ke

6126 6568 (o769 STRA. R@ DVDN+LENG-1 RESTORE INCREMENTED GQUOTIENT
8127 @56E 1B53 BCTR, UN COMP ERANCH FOR NEXT COMPARISON
6128 *

6129 8576 FRde NXDG BORR, k2 SHFL ERANCH IF DIVISION NOT RERDY
6120 6572 BE6711 LODA, k2 GSGN FETCH SIGN QUOTIENT

6131 @575 B4e7 LODL, k# <DYON HIGH-ADDRESS GUOTIENT TO ke
8132 8577 8565 LODI. R1 DDVON LOW- ADDRESS GUOTIENT TO R1
8133 8579 3FaSes BSTR, UN TZER TEST IF QUOTIENT 15 ZERO
@134 657C 3882 BLFR,Z STRS ERANCH IF NOT ZERU

6135 B57E 6606 LODI,RZ B CLEAR R8

6136 9589 CE67BS STAS STRA, R2 DVDN STORE SIGN IN MS-BYTE DVDN
8137 @583 wE@v1e LODA. R2 RSGN FETCH REMAINDER SIGN

6138 8586 8467 LODI, RS CRMDR HIGH-ADDRESS REMAINDER TO Ré
@139 8586 @560 LODL, RL DRMDR LOW- ADDRESS REMAINDER TO Ri
8148 58/ 3FB560 BSTR, UN TZER TEST IF REMAINDER 1S ZERD
6141 858D S%az BCFR, 2 STRS BRANCH IF NOT ZERU

6142 B56F 0680 LOD1.R2 8 CLEAR RZ

@143 #5914 CE67oR STRS STRA: K2 RMDR STORE SIGN IN MS-BYTE RMOR
8144 @594 17 RETC, UN RETURN

6145 *

8146 8595 46 OVFL HALT OVERFLOW LOCATION

6147 *

6148 0692 END 8

TOTAL ASSEMBLY ERRURS = @088

Silnotics

1

FIXED POINT DECIMAL ARITHMETIC ROUTINES

AS55

ROUTINES FOR SIGNED
FIXED-POINT ARITHMETIC

As illustrated in Figure 12, the numbers
used in these arithmetic routines are in sign-
magnitude notation with decimal pointindi-
cation. The latter gives the number of deci-
mals, and has a minimum of zero and a
maximum limit of 15 or the number of digits,
whichever is smaller.

The length of the numbers is defined by the
number of bytes (including the sign byte)
they require. This parameter can be modi-
fied by changing the definition of LENG in
the source program. Note that for clarity,
each routine is written in a “stand-alone”
form. If more than one routine is required in
a program, considerable savings in the pro-
gram space required can be realized by
breaking out common operations as sub-
routines.

Program Title
ALIGNMENT SUBROUTINE FOR FIXED-
POINT NUMBERS

Function

Aligns a fixed-point number to the decimal
point position indicated by the contents of

....... MNDAT n»_s-_.... .\...—,.l e oan armAant
lUgiblb‘l UriNI. refnorms roun uirnyg as speci-

fied.

Parameters

Input:
RO contains the high address of the oper-
and.

R1 contains the low address of the operand.
DPNT contains the required decimal point.

ROUN contains the rounding constant:
(ROUN) = H'00’ for no rounding; (ROUN) =
H’05’ for 5/4 rounding; and (ROUN) = H'09’
for round-up.

Prior to entry, WC in PSL must be 1.

Length of operand (in bytes) is defined by
LENG.

Output:
Aligned operand; rounded if specified.

Alignment overflow is detected.

Operation:

The results of a fixed-point operation must
be aligned to the required number of deci-
mals. By means of this aligning routine, the
numbers are shifted left or right, if neces-
sary, until the appropriate decimal point
position is obtained. This position must
have previously been stored in a register
designated DPNT. During left alignment,
overflow can occur if a non-zero digit drops
out of the most-significant digit position.

12

2650 MICROPROCESSOR APPLICATIONS MEMO

During aligning itis also possible to perform
rounding of the operand. This is done by
adding a rounding digit to the most-
significant digit of the decimals which are
truncated by the right alignment. This
rounding digit must have previously been
stored in register ROUN and gives the
possibilities listed above. Since rounding

can only be performed during right align-
ment, the required decimal point position
must be less than 15if rounding is desired. If
the aligned result is minus zero, the sign is
changed.

Refer to Figures 13 and 14 for flowchartand
program listing.

FIXED-POINT, SIGN-MAGNITUDE NOTATION

magnitude
-
one byte (8 bits)
] | |
CzfJoerfmso] [T T T 1~ ——~ " 1 Tuisp]
T T L

most-significant
byte

most-significant BCD digit
decimal point position (hex)
sign: H'O" is +, H'F’ is —

Figure 12

least-significant byte

least-significant BCD digit

FLOWCHART FOR FIXED-POINT ALIGNMENT SUBROUTINE

Enter ALGN

\V4

Save operand-address
(RO), (R1) in TADR, TADR + 1

I Decimal point operand—R1 l
|

OPERATION (on fixed-point operands):

OPERAND —> OPERAND

aiign

7, N O)

-
one byte

LENG bytes

Yes

MSD operand
#0?

QVERFLOW
No
‘ Increase decimal point I

(R1) + 1--R1

[Decrease decimal point:]
{R1) — 1=R1

¥

Shift operand one dl it
I left, expc(ir MS- N J

Add rounding constant
ROUN to operand

[Clear carry J

T

Y
Shift operand one
digit right, excluding
most-significant byte
(carry) > MS|

ARDY

/Operand/ =07

Assemble sign operand and
new decimal pom(position (R1)

Assemble + sign and
new decimal point position (R1)
T

T‘

Restore sign + decimal point in
most-significant byte operand

Figure 13

sifnotics

FIXED POINT DECIMAL ARITHMETIC ROUTINES

ASS55

2650 MICROPROCESSOR APPLICATIONS MEMO

HARDWARE AFFECTED

RO 1 R2 R3 R2 R3' RAM REQUIRED (BYTES): 4
R1' '
REGISTERS X X X X ROM REQUIRED (BYTES): 120
MAXIMUM SUBROUTINE
1] P
PSU NESTING LEVELS: None
cc | IDC| RS | WC | OVF [COM| C | ASSEMBLER/COMPILER USED: TWIN VER 1.0
PSL
X X X X
FIXED-POINT ALIGNMENT SUBROUTINE
THIN RSSEMBLER VER 1.8 PAGE @@61 THIN RSSEMBLER VER 1.0 PAGE @paz
LINE FODR OBJECT E SOURCE LINE ADDR OBJECT E SOURCE
o * F760630 0057 8468 50843 BCFR,Z OVFB BRANCH IF ALIGNMENT OVERFLOW
3662 8956 468 098 BIRR, RY $+2 INCREASE DECIMAL FOINT
o003 * FIXED FOINT FLIGNMENT SUBROUTINE * 8059 * e SHIFT OFERAND ONE DIGIT LEFT,
m : p060 * EXCEFT MS-BYTE (SIGNHDPNT)
061 646D 7561 SO CPSL C CLEAR CHRRY
;’g_‘; » DEFINITIONS OF SYreOLs: 0052 BGF B7R4 LODI R3 LENG-1 LORD INDEX REG
063 G471 BFE442 SHLL LODR RO *TAOR, F3 FETCH BYTE OF OPERAND
x g‘: oo : ROCESSOR REGISTERS 064 6474 Dl) ROTRTE LEFT KITH CARRY
oot oo o o s 8065 P475 CFE442 STRA, kO *TADR, K% RESTORE
oot oons o o 0966 8478 FET7 BORR.R3 SHLI BRANCH IF ALL NOT SHIFTED
s L 8667 P47R FA7L BORR,R2 SHLB ERANCH IF 4 BITS NOT SHIFTED
0012 6665 WCoOER 1B’ PsL: 1=MITH G=HITHOUT CARR 68 2470 165D BCTR.UN TOPR BRAMCH FOR NEXT TEST
Be1s BBl L EQU Hel’ CARRY/BORROW 2969 x
ggi; 22 E_u Eg‘j g BRANCH CORD. - EZE“A 6079 B47E 9933 TOFL BOFR,GT FRDY BRANCH IF DECIMAL POINT IS CORRECT
ot o _ 0071 6430 F908 BORR R $+2 DECRERSE DECIMAL POINT
g‘; Py o 1 @T?w 072 8482 EDR440 COMA,RL DPNT TEST IF LS-DIGIT iS ROUNDING DIGIT
ot Luu o 2 thommm 0673 6485 9618 BOFR,EQ SHRB BRANCH IF NOT
podnd ! 3 o074 * ADD CROUN) TO ROUNDING-DIGIT:
975 8487 7561 oL CLEAR CARRY
g‘i + PRRAYETERS « 0676 453 8764 LODL RS LENG-1 LD INDEX REGISTER
<. -~ -~
6622 8965 LENGEQU 5 LENGTH OF OPERAND (BYTES) gg;; 3g gzu Ribe ;)ug?::g ,:T?: ks ff,;”;?gﬁ fmm
2623 * o
e 679 #4969 E764 COML K3 LENG-L
x; 6000 . 0RG H44b D069 6492 9863 BOFR.EG RMDL BRANCH IF NOT LS-BNTE
1 0494 §CB44L R R ROUND:
9926 0440 DPNT RES 1 REQUIRED DECIMAL POINT (B THROUGH 15) 32 9497 94 - Dr(&mga RON %"ﬂ ;ﬁ?&gi
2;7; mé m ’fég 1 ROUNDING CONSTANT :_0'5 R 9;5 053 0498 CFE442 STRA, RB +TADR, RS RESTORE RESULT
poid ! 2 TENPORARY STORRGE FOR ADDRE 984 8498 FESE BORR.RY RNOB BRANCH IF ALL BYTES NOT RERDY
e, 085 649D 1862 BCTR,UN SHRL BRANCH TO RIGHT-SHIFT OPERAND
:i: Badd . ORG HdSa” STRRT OF SUBROUTINE 8886 * SHIFT OPERAND ONE DIGIT RIGHT,
0667 T MS-BYTE ¢)
9932 * OPERAND 1S ALIGNED TO DECIMAL POINT POSITION RS P L C M;xcg:m:s BYTE (SIGHAOPNT
6azs + INDICATED By REGISTER DPHT _ 0089 B4R1 6760 SHRL LODLLR3 8 CLEAR INDEX
s * ROUIDING 15 PERFORMED WWBER FOLLINING CORDITICHS: 0699 BRI BFR442 SHRZ LODR, RG +TADR, K3, + FETCH BYTE OF GPERRND
935 ¥ (ROUR) CONTRINS 86" FOR N0 ROUNDING 891 6456 50 RRR. K8 ROTATE RIGHT KITH CARRY
0836 * (RORD CONTAINS H'85” FOR 54 RONDING 0892 M4A7 CFE442 STRA, RB +TADR, K3 RESTORE BYTE
037 * (ROUN) CONTRINS H’89° FOR ROUND-UP o953 B4R E7B4 COHL K3 LENGA
6638 * (DPNT) MUST BE < 15 IF ROUNDING IS REQUIRED. 9094 B4AC 9675 BCFR.EQ SHRZ BRANCH IF ALL NOT SHIFTED
@839 * ALIGHHENT-OVERFLOW 1S DETECTED. @295 B4RE FRGF BORR, R2 SHR® BRANCH IF 4 BITS NOT SHIFTED
8840 * PRIOR TO ENTRY: WC IN PSL MUST BE 1. 0096 B488 1FE456 BCTA,UN TOPG BRANCH FOR NEXT TEST
041 * %8 CONTAINS HIGH-AODR OF OPERRND piad .
xi : ;ﬁm %ﬁéﬁ?ﬁ %Izﬂ“ 8098 @483 BEG442 ARDY LODA,R2 ¥TADR FETCH MS-BYTE OF OPERAND
0899 8486 46F6 ANDL R H'F&’ REMOVE DECIMAL FOINT, KEEP SIGN
gg : ROUN CONTAINS. ROUKNDING CONSTRNT 100 485 6784 LODL,R3 LENG-1 LOAD INDEX REGISTER FOR ZERO TEST
@101 B4BA OFE44Z TZER LODR,RA *TAOR, K3 FETCH BYTE OF RLIGNED OPERAND
0046 0450 (08442 ALGN STRA,RB TAOR SAVE HI-ADDRESS OF OPERAND 162 648D 9833 BRZ NZER ERANCH IF NON-ZERD
0647 6453 (D044 STRA,RL TRORH. SAYE LO-RODRESS OF OPERRND o167 4BF FE79 BRR.RS TZER BRANCH IF ALL BVTES NOT REFDY
048 6456 BDB442 LOGARL «TRR FETCH MS—BVTE OF CPERFHD 04 B4C1 (2 v ke 26R0 RESULT; CLEAR SIGH
0849 0459 450F AOLRL HBF’ REWOVE SIGN, KEEP DECIMAL POINT o185 B2 62 R L2 R FETCH SIGN
0856 8456 8664 TOP8 LODL R2 4 LORD '-09;;““’”&““ 8166 B4C3 61 k2 R ASSEMBLE SIGN AND DECIMFL POINT
0951 845D EDG448 COMALRL DPNT COMPRRE POINT NITH 0107 8404 (L8442 STRR, KB +TADR STORE IN MS-BYTE OF OPERAND
852 * REQUIRED DECIMAL POINT. o106 bior 19 RETC.N RETURN
0853 6468 9RUC BCFR.LT TOPL BRANCH IF EQUAL OR T0O BIG poped .
B854 0462 20 ERZ Ro CLER RO #1418 B4CS 40 0VF6 HALT ALIGHMENT OVERFLOW
0955 8463 BCA442 LODFL R® +TADR, RB, + FETCH MS-DIGITS OF OPERAND ottt g
056 8466 447D ANDL,R® H'FB’ CLEAR LS-DIGIT CTEST HSD = 8) o e 00 &
TOTAL ASSEMBLY ERRORS = 6068

Figure 14

Siljnotics

13

FIXED POINT DECIMAL ARITHMETIC ROUTINES AS55

Program Title

FIXED-POINT ADDITION/SUBTRACTION
OF SIGNED, PACKED BCD NUMBERS

Function
Addition/subtraction of 2 decimal fixed-
point numbers.

Operands and result are of equal length as
defined by LENG.

OPERAND1 +/- OPERAND2 =3
OPERAND2

Parameters

Input:
Length of numbers (in bytes) defined by
LENG.

OPR1, OPR1+1, OPR1+2, etc. contain au-
gend or subtrahend.

OPR2, OPR2+1, OPR2+2, etc., contain ad-
dend or minuend.

In the alignment subroutine, the decimal-
point position is in DPNT and the rounding
constant is in ROUN.

Output:
OPR2, OPR2+1, OPR2+2, etc., contain sum
or difference.

Result and operand1 are aligned (and
rounded if specified).

Overflow is detected.

Special Requirements
Software: Fixed-pointalignment subroutine
ALGN.

Operation

Subtraction is performed by changing the
sign of the second operand before entering
the (signed) addition routine. Prior to the
addition/subtraction of the magnitudes of
the operands, both operands are aligned
(and rounded if programmed), the sign of
the result is determined and, in the event the
operands have opposite signs, the subtra-
hend and minuend are designated.

Refer to Figures 15 and 16 for flowchart and
program listing.

2650 MICROPROCESSOR APPLICATIONS MEMO

FLOWCHART FOR ADDITION/SUBTRACTION OF FIXED-POINT NUMBERS

Enter FXAD Enter FXSU

| CHANGE SIGN OPR2
T

FXAD
INITIALIZE PSL: Operations:
:?g;;z?gg:nv;;?sgf."y FXAD: OPR1+ OPR2 - OPR2
12 FXSU: OPR1 — OPR2 -+ 0OPR2
I l ALIGN OPR1 I I

Y
I | ALIGN OPR2 Ll

Yes

OPR2<0?

No
[+sion 1o RESULT] [+SIGN TO RESULT I

Yes
ADDY r] SIGN TO RESULT —[—I
[/OPR1/ + /OPR2/—~ RESULTJ
Yes
{ HALT)=<QVERFLOW?
No
RETURN

l I —SIGN TO RESULT I J

|_[—SIGN TO RESULT [1

[]
LBL1y Y LBL3
I /OPR1/—/0PR2/—>RESULT] I /OPR2/—/OPR1/—»RESULT I

Figure 15
HARDWARE AFFECTED
: 2
CEGISTERS RO R1 R2 R3 R1’ R2' R3' RAM REQUIRED (BYTES) x LENG
X X X X ROM REQUIRED (BYTES): 151
F I SP MAXIMUM SUBROUTINE
PSU NESTING LEVELS: 1
cc IDC RS wc | ovF | com c ASSEMBLER/COMPILER USED: TWIN VER 1.0
PSL
X X X X X X
14 Sifnotics

FIXED POINT DECIMAL ARITHMETIC ROUTINES

AS55

2650 MICROPROCESSOR APPLICATIONS MEMO

FIXED-POINT DECIMAL ADDITION/SUBTRACTION
FOR SIGNED, PACKED BCD NUMBERS

TWIN RSSEMBLER VER 1.8 FAGE @881

LINE RDDR OBJECT E SOURCE

6061 * PD760832

6062

0683 * FIXED-POINT DECIMAL ADDITION/SUBTRACTION *

8684 * FOR SIGNED, PACKED BCD MUMBERS. *

0685

0086 * OPERRTION: OPERANDL +/- OPERANDZ —) OPERAND2
0007 * OPERANDL 1S IN: OPRY, OPRi+L, OPR1+2, ETC
0668 * OPERAND2 15 IN: OPRZ, OPR2+1, OPR2+2, ETC.
0089 * SUM/DIFFERENCE IS IN: OPR2, OPR2+1, OPR2+2, ETC.
010 * OPERANDZ 1S DESTROVED AFTER ADD/SUBTRACT.

0911 * OPR1, 0PR2 ARE MOST-SIGNIFICANT BYTES.

0912 * LENGTH OF NUMBERS (IN BYTES) IS DEFINED BY: LENG.
0813 * ALLOWED RANGE: 1 < LENG ¢ 285

0014 * NUMBERS ARE IN SIGN-MAGNITUDE NOTATION.

0915 * MS-BYTE HOLDS SIGN AND DECIMAL POINT INFORMATION:
0916 * SIGN IS IN M5 4 BITS: W@’ IS+ HF’ IS -
0817 * DECIMAL POINT IS IN LS 4 BITS: BINARY CODED,
0618 * RANGE (B THRU 15) EQUALS NUMBER OF DECIMALS.
19 *

0820 * DEFINITIONS OF SYMBOLS:

0021 *

0622 6608 R6 EQU e PROCESSOR REGISTERS

6023 0081 RL EQU 1

0824 0082 R2 EQU 2

0825 0003 R3 EQ 3

0626 6068 W E H@8’ PSL: 1=WITH, @=WITHOUT CARRY
0827 0082 COM EQU L7 1=L0GIC, B8=ARITH. COMPFRE
9828 0081 [P H@e1’ CARRY /BORROW

0829 6000 Z EW (] BRANCH COND. : ZERO

0830 8082 N EW 2 NEGATIVE

0031 0208 B¢ EW 8 EQUAL

60832 0881 6T EW 1 GREATER THAN
8033 86z LT E 2 LESS THAN
0834 0083 W EW 3 UNCONDITIONAL
8835 *

0836 * PARAMETERS *

0837 *

0838 8458 ALGN EQU H’458° ADDRESS OF ALIGNMENT SUBROUTINE
8839 0085 LENG EQU 5 LENGTH OF OPERANDS (IN BYTES)
9848 *

0841 0008 ORG H’788’

0842 *

9943 9790 OPRL RES LENG OPERANDL

8844 8785 OPR2 RES LENG OPERAND2/RESULT

0845 *

THIN ASSEMBLER VER 1.8 PRGE 8002
LINE ADDR OBJECT E SOURCE

0847 876A ORG H’ 508"

#048 *

0849

6850 * SUBROUTINE TO COMPARE OPERANDT WITH OPERANDZ (UPDATE (L) *
9851

0852 8508 @508 C012 LODL.RL @ CLEAR RL; MS-BITS ARE USED
8853 * TO SRYE CC INFORMATION
0854 8502 6704 LODI, R3 LENG-4 LOAD INDEX REGISTER

6855 8504 BF6760 COMO LODA, RE OPR1,RT FETCH BYTE OF GPERANDL

6856 0507 EF6765 COMA, k@ OPRZ,R3 COMPARE WITH BYTE OF OPERANDZ
0857 656A 1862 BCTR, EQ COML BRANCH IF EQUAL

6858 050C 13 SPSL : PSL TO ke

8859 ¥580 C1 STRZ ™ SRVE PSL IN RL

0960 959 FB74 COML BORR, R3 COM@ BRANCH IF ALL BYTES HOT TESTED
8861 0516 61 L0z R UPDATE CC WITH STATUS COMPARE
8862 8511 17 RETC, UN RETURN

8063 *

8864

0065 * SUBROUTINE TO SET SIGN OF RESULT TO NEGATIVE *
0066

8867 8512 8CO785 SSGN LODR, R8 OPR2 }EYCH SIGN OF RESWLT

8868 8515 64F6 10RI, R8 H'F8’ SET NEGATIVE SIGN

8869 8517 (L8785 STRA, kK8 OPRZ RESTORE

8876 051R 17 RETC, UN RETURN

8071 *

0072 * RO
0873 * * FIXED-POINT SUBTRACTION *
8074 * AR IOR AR OOORK
6875 *

Figure 16

8876 @518 68765 FXSU LODA, R OPRZ
8877 B51E 24F8 EORI, k@ H'Fe’
0678 8520 CCO765 STRA, k8 OPRZ
6079 *

6880 *

0881 *

00882 *

60883 *

8884 @523 776R FXAD PPSL WC+COM
8685 @525 8467 LODI, k8 <OPRY
6886 0527 6568 LODL, R1 Y0PRL
8987 6529 3F6450 BSTA, UN ALGN
0688 652C 8467 LODI, k9 <OPRZ
86889 052 6505 LODL, R1 Y0PR2
6096 8530 3F6456 BSTA, UN ALGN
0091 @533 66765 LODA, RB OPRZ
6892 8536 C1 STRZ Ri
6893 8537 440F ANDI, R® H'6F
0694 0539 CCB785 STRA, k8 OPR2
6895 053C 61 Loz Ri
0896 653D 24 BCFR,N LBLG
0897 O53F 6C8780 LODA, KB OPRL
0898 8542 9A3A BCFR,N LBL2
8699 8544 3FO512 BSTA, UN SSGN

TWIN HSSEMBLER VER 1 6

LINE FODR OBJECT E SOURCE

6161 *

6102 @547 7561 RO CPSL C

6103 8549 6794 LODI, R3 LENG-1
6164 8548 6560 LODI,RL &

6185 654D eF676e HDD® LODR. kB OPRL, K3
6166 8558 Sdee HODL, 8 H'66”
5167 8552 51 KRR RL

8168 @552 gFeves ADDA, RS OPFZ, RZ
8169 8556 94 DAR, RE

6116 8557 CF6785 STRA, kB OPRZ, KX
3111 8558 D1 RRL, R4

6112 8558 FE70 BDRR, R3 ADOG
8113 8550 9838 BCFR. 2 OVFL
6114 @55F 17 RETC, UN

0115 *

6116 6560 66700 LBLG LODA, R OPRL
8147 8563 962 BCFR, N ADD
6118 #8565 3F8508 BSTA, UN €012
e119 *

7126 8568 991C BCFR, GT LBL3
6121 856A 3FES12 BSTA, UN SSGN
eiz2z2 *

8123 *

8124 856D 6794 LELL LODI, R3 LEMG-1
0125 B56F 7761 PPSL C

0426 8571 @GF6768 SU42 LODA, RS OPRL,R3
6127 6574 FF67GS SUBA, RG OPR2, R
6128 8577 94 DFR, R

8129 8578 CF6785 STRA, RB OFRZ, R3
6136 8576 FB74 BDRR, R3 SUi2
6131 857D 17 RETC, UN

8132 *

8133 @57E 3F@506 LBLZ BSTA, UN C012
0134 *

6135 8581 9R6A BCFR,LT LBLL
6136 8583 3FE91Z BSTA, UN SEGN
8137 *

8138 *

8139 8556 8704 LBLZ LODI, K3 LENG-1
6146 8588 7701 PPSL C

8141 B58R BF6785 SUzi LODA, k8 OPR2, K3
6142 858D AF6786 SUBA, R@ OPR1.R2
8143 8598 34 DAR, RS

6144 8591 CFe785 STRA, Ré OPRZ, K3
8145 8594 FB74 EDRR, RZ SUZL
0146 8596 17 RETC, UN

0147 *

6148 8597 48 O¥FL HALT

0149 *

8156 8606 END @

TOTAL RSSEMBLY ERRORS = 0088

FETCH SIGN OF OPERANDZ
CHANGE SIGN
RESTORE SIGN OF OPERANDZ

KKKk
* FIXED-POINT RDDITION *
R Rk

OPERATIONS WITH CARRY, LOGICAL COMPARE
HIGH-ADDRESS OPR1 TO K8
LOK- ADDRESS OFRL TO R1
ALIGN OPERANDL

HIGH-ADDRESS OPR2 TO K8
LOW- ADDRESS OPRZ TO R1
ALIGN OPERANDZ

FETCH SIGN OPERAND2

SRYE IN R1

REMOVE SIGN

SET SIGN OF RESULT TO +
FETCH SIGN OPERAND2

BRANCH IF OPR2 NOT NEGATIVE
FETCH SIGN OPERANDL

BRANCH IF OPR1 NOT NEGATIVE
SET NEGATIVE SIGN RESULT

PAGE 606

(OPRL) + (OPRZ) --> OPRZ
CLEAR CARRY

LOAD INDEX REGISTER

CLERR INTERBYTE CARRY

FETCH BYTE OF OPERANDL

ADU OFFSET FOR BCD ADD
INTERBYTE CARRY TO CARRY

ADD BYTE OF OPERANDZ

DECIMAL ADJUST RESULT

STORE RESULTING BYTE

CARRY (=INTERBYTE CARRY) TO RY, CLEAR CARRY
BRANCH IF NOT RERDY

BRANCH IF INTERBYTE CARRY = 1
RETURN

FETCH SIGN OF OFERANDL
BRANCH IF OPRL NOT NEGRTIVE
COMPARE OPRL WITH OFR2,
(MAGNITUDES ONLY).
BRANCH IF OPRL ¢ OR = OPRZ
SET NEGATIVE SIGN OF RESULT

COPRL) - (OPR2) --» OPRZ:
LOAD INDEX REGISTER

CLEAR BORROW

FETCH BYTE OF OPERANDL
SUBTRACT EYTE OF OPERANDZ
DECIMAL AOJUST RESULT

STORE RESULTING BYTE IN OPK2
BRANCH IF NOT RERDY

RETURN

COMPARE OPR1 WITH OPR2,
(MAGNITUDES ONLY)

BRANCH IF OPRL > OR = OPRZ

SET NEGATIVE SIGN OF RESULT

(OPR2) - (OPRL) --> OFR2:
LOAD INDEX REGISTER
CLEAR BORROW

FETCH BYTE OF OPERANDZ
SUBTRACT BYTE OF OPERANDL
DECIMAL ADJUST RESULT
STOKE RESWLTING BYTE
BRANCH IF NOT RERDY
RETURN

ARITHMETIC OVERFLOW

 SilnDLics

15

FIXED POINT DECIMAL ARITHMETIC ROUTINES

AS55

Program Title

FIXED-POINT DECIMAL MULTIPLICA-
TION FOR SIGNED, PACKED BCD NUM-
BERS

Function
Multiplication of 2 decimal fixed-pointnum-
bers.

Multiplicand, multiplier, and product are of
equal length as defined by LENG.

MULTIPLICAND x MULTIPLIER =
MULTIPLIER

Parameters

Input:
Length of numbers (in bytes) is defined by
LENG.

MPLC, MPLC+1,
multiplicand.

MPLR, MPLR+1, MPLR+2, etc., contain mul-
tiplier.

MPLC+2, etc., contain

Output:
MPLR, MPLR+1,
product.

MPLR+2, etc., contain

Multiplier is destroyed after multiplication.

Overflow is detected.

Special Requirements

Software: Fixed-pointalignment subroutine
ALGN

Operation
Prior to the multiplication algorithm (which
is an unsigned operation), the product sign

2650 MICROPROCESSOR APPLICATIONS MEMO

FLOWCHART FOR MULTIPLICATION

Enter FXMP
OPERATION:

INITIALIZE PSL:
« operations with carry
 logical compare

Y
Sign MPLC®sign MPLR
— SIGN

OF FIXED-POINT NUMBERS

MPLC x MPLR —>MPLR

+/~|DPT|MS!| LSD|
Decimal point MPLC + multiplicand
decimai point MPLR i 4 : : :
——> TDPT CL T [T [+foijmsof [[usol
N 1 +— +
Clear most-significant byte MPLR)
Clear extended MPLR (EMPR] extended multiplier
Y
I 2 x LENG—R2 product
————4 NXTD
Least-significant digit
of MPLR->R1
SHRG

Shift EMPR, MPLR
one digit right (4 bits)
O-~MSD of EMPR

(MPLC)*+ (EMPR)—> EMPﬂ

¥
] [(R2) — 1—=R2
[wo—i——m |
N
°<_(R2)=0?
* = without most-significant byte
Yes
r (TDPT)>R2 J

TOVF

Jes ~Ms-byte

Yes

SHFP
Yes
OVERFLOW
No

<>

Yi
is determined. The product is formed in a ___ Y z No
double-length register and is right aligned fﬁé'éai?ffiﬁi.ﬂ'h?m @
until the decimal point is 15 or less; this is 0-+MSD of EMPR Yes
required due to the fixed-point format. Then [(R2) — 1—>-R2] [Clear SIGN [
the product length is reduced to the single-]
length, fixed-point format; if this is not pos- Assemble SIGN and
sible, overflow is detected. A “minus zero” decimal point (R2) J
product result is excluded by means of atest Sto stsignificant byte MPLR
during aligning. ¥ -
Refer to Figures 17 and 18 for flowchart and [L ALIGN MPLR L
program listing.
Figure 17
HARDWARE AFFECTED
RAM REQUIRED (BYTES): (3 X LENG) +4
REGISTERS F§(° F;(‘ sz “)? R1" | R2' | R3' | RoM REQUIRED (BYTES): 144
m SP MAXIMUM SUBROUTINE
PSU NESTING LEVELS: 1
PSL ccC IDC| RS | wC | OVF |[COM| C ASSEMBLER/COMPILER USED: TWIN VER 1.0
X X X X X X
16 Sinotics

FIXED POINT DECIMAL ARITHMETIC ROUTINES

AS55

2650 MICROPROCESSOR APPLICATIONS MEMO

FIXED-POINT DECIMAL MULTIPLICATION FOR

SIGNED, PACKED BCD NUMBERS

TWIN RSSEMBLER VER 1. @ FRGE 8681

LINE RDDR OBJECT E SOURCE

0061 * PD768883
w92
0003 * FIXED POINT DECIMAL MULTIPLICATION FOR *
0064 * SIGNED, PRCKED-BLD NUMBERS *
6885
0806 * OPERATION: MULTIPLICAND X MULTIPLIER --> MULTIPLIER
8867 * MILTIPLICAND 15 IN: MPLC, MPLC+L, MPLC+2, ETC
0888 * MULTIPLIER IS IN: MPLR, WPLR+L, MPLR+2Z, ETC.
0869 * PRODUCT IS IN: MPLR, MPLR+1, MPLR+2, ETC.
(250 * MULTIPLIER IS DESTROYED AFTER MULTIPLICATION.
611 * MPLC, MPLR ARE MOST-SIGNIFICANT BYTES.
0912 * LENGTH OF NUMBERS (IN BYTES) IS DEFINED BY: LENG
6013 * ALLOWED RANGE: 1 { LENG < 65
6914 * PEQUIRED NUMBER OF DECIMALS IN PRODUCT MUST BE
0815 * STORED IN LOCATION: DPNT (MAX = 15)
0816 * NUMBERS ARE IN SIGN-MAGNITUDE NOTATION.
0817 * MS-BYTE HOLDS SIGN AND DECIMAL POINT INFORMATION
2818 * SIGN IS INMS 4 BITS: H'@ IS+, HF’ IS -
0619 * DECIMAL POINT IS IN LS 4 BITS: BINARY CODED,
6620 * RANGE (B THRU 15) EQUALS NUMBER OF DECIMALS.
0621 *
6822 * DEFINITIONS OF SYMBOLS:
0823 *
6824 0600 ke EQU 8 PROCESSOR REGISTERS
00825 08681 kR EQU 1
0826 0082 k2 EQ 2
7827 0883 k3 EQU 3
8828 0088 W EW H’8g’ PSL: 1=WITH, @=WITHOUT CARRY
0829 0682 con EQU H@2’ 1=LOGIC, B=ARITH. COMPARE
0936 6061 C Ew H@1’ CRRRY/BORRON
0831 6066 Z B] BRANCH COND. © ZERO
0832 0082 LT Ew z LESS THN
8833 0083 W EW 3 UNCONDITIONAL
0834 *
6835 * PARAMETERS *
8036 *
6837 6458 ALGN EQU H’458” ADDRESS OF ALIGNMENT SUBROUTINE
0938 8885 LENG EQU 5 LENGTH OF PARAMETERS (BYTES)
8639 *
0646 6888 ORG H’ 760"
8641 *
8842 0708 MPLC RES LENG MULTIPLICAND
0843 8785 EMPR RES LENG EXTENDED MULTIPLIER
0844 670R MPLR RES LENG MULTIPLIER
00845 * NOTE: EMPR AND MPLR MUST BE IN SUCCESSIVE
0846 * RAM LOCATIONS FOR DOUBLE-LENGTH SHIFT.
0647 876F SIGN RES 1 TEMPORARY SIGN
0648 @718 TEMP RES 2 TEMPORARY STORAGE FOR RDDRESS
6849 6712 TOPT RES 1 TEMPORARY STORRGE FOR DECIMAL POINT
6856 *
9851 8713 ORG H’568"
TWIN RSSEMBLER VER 1.8 PAGE 8662
LINE ADDK OBJECT E SOURCE
8853
0854 * SUBROUTINE TO SHIFT EMPR AND MPLR ONE DIGIT RIGHT
8855
0856 * PRIOR TO ENTRY: WC IN PSL MUST BE 1
0857 *
6858 9508 8564 SHEM LODLLRL 4 LORD LOOP COUNTER
8959 6502 67F6 SHEB LODI, RY -LENG-LENG LOAD INDEX REGISTER
8260 9564 7961 L C CLEAR CARRY
6061 8586 BFG6EF SHEL LODA, K@ EMPR-Z56+LENGHLENG, R3 FETCH BYTE
6862 8509 58 RRR, R@t ROTATE RIGHT
063 650A CFE6EF STRA, RG EMPR-256+LENGHLENG, R3 RESTORE BYTE
6B64 856D DB77 BIRR, R3 SHEL BRANCH IF ALL NOT SHIFTED
6065 B50F FI71 BORR,RL SHE@ Y BRANCH IF 4 BITS NOT SHIFTED
8066 8511 17 RETC, UN RETURN
6067 *
6868
@869 * FIXED POINT MULTIPLICATION *
0678
6071 *

72 6512 77eR FXMP PPSL WC+COM OPERATIONS WITH-CARRY, LOGICAL COMPARE
0873 9514 6DE7E0 LODA, R MPLC FETCH MS-BYTE MULTIPLICAND
6874 8547 61 Lz K SAYE IN Re

6075 8518 @Ee7eR
6876 6516 22
8077 @51C 44F@
8878 854E CCB7oF
6879 8521 o1
8888 8522 446F
6861 0524 466F
9882 @526 7561
06883 8528 82
6884 @529 (Le712
6885

6886 852C 26
6087 652D 8786
0888 @52F CF47eS
6889 8532 SB7B
8896

6891 8534 B66A
8892 6536 8DB78E
6693 8539 456F
2694 8538 1826

0106 8544 8466
6101 8546 CF6785
6162 8549 FB76
0163 @548 8764
6164 854D OF6765
0165 @550 &F6708
0186 6552 94
6167 @554 CF676S

0168 @557 FE74
8169 @559 Bares
6110 @55C 2do0
8111 @S5E CCo7esS
8112 @561 F95A
6112 @563 2FeSea
0114 8566 FR4E
6115

6116 6568 BEETLZ
8117 @Sek @766
#118 8560 BF475
819

8126 8578 3514
6121 @57z SB79
elze

8123 8574 E616
8124 8576 AL
8125 8578 eEaTer
126 @576 CEG7@R
8127 @57E v407
6126 @580 ASeA
8129 @562 3FB4Se
6138

@131 @565 17
8132

8133 6586 a2
6134 8587 1867
6125 @589 FRe6
8136 @568 3FESHA
@137 @58E 1B5R
6138

6139 @59 4@
ei48

6141 6068

Figure 18

TWIN ASSEMBLER YER 1. @ FRGE 8863

LINE ADDR OBJECT E SOURCE

TOTAL RSSEMBLY ERRORS = 680

LODA, RZ MPLR FETCH MS-BYTE MULTIPLIER

EORZ R2Z THKE EX-OR OF SIGNS

ANDI, k& H'Fe’ REMOVE NON-SIGN DIGIT

STRA, k8 SIGN SAVE SIGN

Lz Rt MS-BYTE OF MPLC TO R@

ANDI, R8 H'&F/ REMOVE SIGN MPLC, KEEP DECIMAL POINT
ANDT, R2 H/BF” REMOVE SIGN MPLR, KEEP DECIMAL POINT
sl C CLEAR CRRRY

Dz R2 RDD DECIMAL POINT POSITIONS

STRA, k@ TOPT SAVE NEW DECIMAL POINT PUSITION

ERZ k@ CLERR RY
LODT, k3 LENG+1 LORD INDEX REGISTER
CLEM STRA, k@ EMPR,R3, - CLEAR MS-BYTE MPLR, ALL EMPR
BRHR, k3 CLEM BRANCH IF NOT DONE
*
LODI, k2 LENG+LENG NUMBER OF DIGITS TO LOOP COUNTER
NXTD LODA, R1 MPLR+LENG-1 FETCH LS-BYTE MULTIPLIER
ANDI, RL H/GF° TAKE ONLY LS-DIGIT
BCTR,Z SHRG BRANCH IF ZERO
*
* ROD MPLC (WITHOUT MS-BYTE) TO EMPR
ADMC CPSL C CLEAR CRRRY
LODI, k3 LENG-1 LOAD INDEX REGISTER
ADM@ LODA, k@ EMPR.R3 FETCH BYTE OF EXTENDED MULTIPLIER
ADDI, RB H'66" ADD OFFSET
STRA, k@ EMPR, RS RESTORE INTERMEDIRTE SUM
BORR, R3 ADHE BRANCH IF ALL BYTES NOT ADDED
LODI, K3 LENG-1 LOAD INDEX REGISTER
ADML LODF, R@ EMPR,R3 FETCH BYTE OF INTERMEDIATE SUM
ADDA, k8 MPLC,R3 ADD BYTE OF MULTIPLICAND
DAR, R8 DECIMAL ADJUST RESULT
STRA, KB EMPR,R3 RESTORE RESULTING BYTE

BORR, R ADML BRANCH IF NOT RERDY

LODA, k8 EMPR FETCH M5-EYTE EXTENDED MULTIPLIER

AUDT, kY @ AUD CARRY

STRA, ke EMFR RESTORE

EORR, L ADMC DECREMENT DIGIT, BRANCH IF NOT @
SHREG BSTA, LN SHEM SHIFT EMPR AND MPLR RIGHT ONE DIGIT POSITION

EDRR, RZ HXTD ERANCH IF MULTIPLICATION NOT READY
*

LODA, R2Z TOFT DECIMAL POINT TO K2
TOVF LODL K3 LENG+L TEST OVERFLOW; LOAD INDEX REGISTEKR
TOVe LODA, Ré EMPR, R3, - FETCH BYTE OF EMPR UK MS-BYTE
* OF MFLR TO TEST FOR ZERU.

BOFR, 2 SHFP BRANCH IF NOT ZERO

ERNR, R TOYe ERANCH IF ALL NOT TESTED

COML, B2 16 TEST IF DECIMAL POINT IS < 16.

BUFR, LT SHFG BRANCH IF TOO BIG

10RA, R2 SIGN ASSEMELE SIGN AND DECIMAL POINT
ASME STRA, k2 MPLR STORE IN MS-BYTE MPLR

LODI, k8 <MPLR HIGH-ORDER ADDRESS MPLR TO Ré

LODL, kL JMFLR LOW- ORDER ADDRESS MFLR TO Ri

BSTA, UN ALGN ALIGN PRODUCT; SET + SIGN IF

* PRODUCT IS ZERO
RETC, UN

*

SHFP LODZ R2 UPDATE CC FOR NUMBER OF DECIMALS
ECTR,Z OVFL ERANCH 1F ZERG. OVERFLOW

SHF@ BORR,R2 $+2 DECRERSE DECIMAL POINT

BSTR, UN SHEM SHIFT EMPR + MPLR RIGHT
ECTR, UN TOVF BRANCH FOR OVERFLOW TEST
*

OVFL HALT RRITHMETIC OVERFLOW
*

END]

sifjnotics

17

FIXED POINT DECIMAL ARITHMETIC ROUTINES AS55

Program Title
FIXED-POINT DECIMAL DIVISION FOR
SIGNED, PACKED BCD NUMBERS

Function
Division of 2 decimal numbers (fixed point).

Dividend, divisor, and quotient are of equal
length as defined by LENG.

DIVIDEND :DIVISOR = DIVIDEND.

Parameters

Input:
Length of numbers (in bytes) is defined by
LENG.

DVDN, DVDN+1, DVDN+2, etc., contain div-
idend.

DVSR, DVSR+1, DVSR+2, etc., contain divi-
sor.

Output:
DVDN, DVDN+1, DVDN+2, etc., contain
quotient.

Dividend is destroyed after division.

Overflow is detected.

Special Requirements

Software: Fixed-point alignment subroutine
ALGN.

Operation

Prior to the division algorithm (which is an
unsigned operation), the sign of the quo-
tient is determined. To obtain maximum
precision, the division procedure is contin-
ued until either a non-zero most-significant
digit is detected or the maximum allowed
decimal point position is reached. Then the
resulting quotient is aligned with a minus
zero result suppressed. Overflow is detect-
ed if the divisor is zero.

Refer to Figures 19 and 20 for flowchartand
program listing.

2650 MICROPROCESSOR APPLICATIONS MEMO

‘———-&r
Shift RMDR, DVDN one
digit left (4 bits)
O~+LSD of DVDN

FLOWCHART FOR DIVISION OF FIXED-POINT NUMBERS

Enter FXDI
OPERATION: DVDN: DVSR—>DVDN
[s¢Jopriwst | Tusol
INITIALIZE PSL: ——
. Al)perations with carry divisor
 logical compare ‘ l I T n[I i 4 T 4
+/JopTms | uso
C t + AN +
OVERFLOW O remainder dividend
division by zero
Sign DVDN_@ Sign DVSR quotient
—= QSGN

decimal point DVDN-decimal point DVSR
1 ——QDPT J

Save most-significant byte DVSR
in SAVE

Clear most-significant byte DVSR;
Clear RMDR, most-significant-byte DVDN

[2x LENG = R2 1
SHFL |

[(RMDR)—(DVSR)= RMDR I I (R2)-1—= R2 J
¥
[1ovoN) + 1-~DvDN | No
R |
Yes

most-significant digit yeg

WDN +0? —

TQDP

OVERFLOW 1

arithmetic overflow

Increase decimal point:
(QDPT) + 1= QDPT

[Load loop counter R2 with 1 I

[Assemble (QSGN) and
(QDPT) for t-signifi byte

Sltora in most-significant byte DVD?\I

i (SAVE}
(] ALIGN DVDN [l
Figure 19
HARDWARE AFFECTED
; RAM REQUIRED (BYTES): (3 x LENG) +5
RO R1 R2 R3 R1 R2’ R3’
REGISTERS ROM REQUIRED (BYTES): 166
X X X X
Fln |sp MAXIMUM SUBROUTINE
PSU NESTING LEVELS: 1
P ' e RS WC | OVF {COM (o] ASSEMBLER/COMPILER USED: TWIN VER 1.0
| b §l X X X X

18

SinoLics

FIXED POINT

DECIMAL ARITHMETIC ROUTINES

AS55

2650 MICROPROCESSOR APPLICATIONS MEMO

THIN ASSEMBLER YER 1

LINE ADDR OBJECT E

[
@062
22K
o34
965
606
087
0068
6865
816
e811
8812
813
0814
@15
8016
0017
818
6819
6820
0821
022 0608
6823 0061
0824 4662
825 6603
9626 0668
6827 0882
0828 6061
6829 6006
6830 6001
0931 6882
6832 6688
0933 0882
0834 682
0635
0636
6837
8938 6456
0839 8865
0840
[]
8842
0643 6708
0844 8765
8045
@046
8847 676
0648 670F
8649 8711
0858 8712
0651 8713
6852

TWIN ASSEMELER VER 1
LINE ADDR (OBJECT E

@854 @714

955

@a56 4568 7766
@857

858 858z 6784
8859 @5A4 BFETOA
6669 B5E7 9885
0061 6589 FE?9
8862 B50E 1C85AE
BAET @50E BLO7ES
8864 8511 C1
Ba65 8512 BEGTAA
6865 6515 CEB712
8867 6518 22
0863 6519 44F8
8869 8516 CCeFil
8878 B51E 61
0871 B51F 440F
6872 @521 466F
6873 8523 A2
074 @5ed CLa712
8a7s

0876 8527 28

FIXED-POINT DECIMAL DIVISION FOR
SIGNED, PACKED BCD NUMBERS

[} PAGE 0061
SOURCE
¥ FO766861 8877 6528 CLOTHR
! * G478 6528 B796
+ FIED-FUINT DECIHAL DIVISION 679 6520 CF4760
* FOR SIGNED, FACKED-BLD NUMBERS x 68 8538 S67E
* OFERATION: DIVIDEND - DIVISOR --> DIVIDEND ?,33; 9522 acen
* DIVIDEND 1S IN' DYON, DNON+L, DYDN+2, ETC oo
DIVISOR IS IN: DVSR, DVSR+1, DVSR#2, ETC 084
* GUOTIENT 15 IN DVON, DVDN+1, DVDM+Z, ETC 85
* DIVIDEND 1S DESTROVED AFTER DIVISION. 0956 B34 8584
* DVON AND DVSR ARE MOST-SIGNIFICANT BYTES 957 6536 7561
+ LENGTH OF NUMBERS (IN BYTES) 1S DEFINED BY: LENG 938 6528 760
* ALLOWED RAMGE: 1 { LENG ¢ 65 9989 657 6F4768
* NUMBERS ARE TN SIGN-MAGNITUDE NOTATION. 95 653D DB
* MS-BYTE HOLDS SIGN AND DECIMAL POINT INFORMATION 091 05 CFE786
¥ SIGN IS INMS 4 BITS: H@ IS+ HF 15 - 5092 6541 SE77
¥ DECIMAL FOINT 1S IN LS 4 BITS: BIMGRY CODED, 899% @43 FO7L
* RANGE (8 THRU 15) EQUALS NUMBER OF DECIMALS. Pt
*
e 8995
: DEFINITIONS OF SYMBOLS %%
Re EU 8 PROCESSOR REGISTERS 399; B545 @500
Rt OEW 1
KROEW 2
R3S OEW 3
WC EQU W88 PSL. 1=NITH, B=WITHOUT CARRY
M EQU Hez 1=LOGIC, 8=ARITH. COMPARE THIN FESEMBLER VER 1
¢ E W8 CHRRY/BORRON
z W e BRANCH COND. © ZERD
PR FOSITIVE LINE FDDR CBJECT E
NOEW 2 NEGATIVE #1600 6547 6705
EQ EU 8 EQUAL B161 545 BF4760
LT e 2 LESS THN w162 AS4C EFETEA
N OEW 3 UNCONDITIONAL 6103 A54F 1602
* 6194 @551 12
* PRRAMETERS * 8185 4552 (1
* 6186 6953 5674
RGN EQU /4587 RDDRESS OF ALIGNMENT SUBRGUTDNE 107 9555 @1
LENG EU 5 LENGTH OF OPERANDS C(IN BYTES) 4168 6556 1ALA
* 169
ORG H708’ 6116
* 6111 6556 7761
RMOR RES LENG REMAINDER #112 BS54 G765
DVDN RES LENG DIVIDEND B113 BSSC BF4706
* NOTE: RMOR AND DYDN MUST BE IN SUCCESSIVE 8114 B55F AFETER
* RAM LOCATIONS, BECRUSE OF DOUBLE-LENGTH SHIFT 6115 6562 94
DVSR RES LENG DIVISOR B116 #3632 CF67HR
TEWP FES 2 TEMPORARY STORAGE FOR FODRESS 17 8566 5674
GSGN RES 1 GQUOTIENT SIGN 118
GOPT RES 1 QUOTIENT DECIMAL POINT #1195 @565 eCares
SAVE RES 1 TEMPORARY STORRGE 6126 6566 DEdH
* 8121 956D CCO789
8122 8578 1652
8123
6124 8572 FR4O
6125 @574 26
4126 8575 6(2765
8127 8578 44F6
[} PAGE 062 8128 657R 9811
#129 857C BEO7LZ
SOURCE 6138 @57F EGOF
6131 6581 986F
ORG H’568 8132 8563 DAEB
* 8133 8585 CE@712
FXDIPPSL WCHOMHC OPERATIONS WITH CARRY: #134 8586 6681
* LOGICAL COMPARISON, CLERR BORROW 8135 B8R 1FE534
LODI, RS LENG-1 LOAD INDEX REGISTER FOR ZERD TEST 6136
TZER LODR, K@ DYSR,R3 FETCH BYTE OF DIVISOR 6137 858D BEAT12
BCFR, 2 NZER BRFNCH IF NOW-ZERO 8138 8599 1A15
BORR, R3 TZER BRANCH IF ALL BYTES NOT RDY 8139 8592 6EA711
ECTR 2 OVFE BRANCH IF ZERO @146 8595 CEG78S
NZER LODA, B8 DVON FETCH MS-BYTE DIVIDEND 141 @598 aCeriz
STRZ Rt SAYE IN R1 8142 @598 CCO70R
LODARZ DVSR FETCH MS-BYTE DIVISOR 5142 659 0407
STRA, R2 SAVE SAYE MS-EYTE DIVISOR 8144 65A8 6505
EORZ R2 EX-OR SIGN DYDN AND DVSK 6145 B5A2 3F458
ANDI K8 H’FB’ REMOVE DECIMAL POINT DIGIT @146
STRA, KB GSGN SAVE QUOTIENT SIGN 6147 85A5 17
Loz Rt FETCH MS-BYTE DIVIDEND 8148
FANDL,RG H'BF/ REMOVE SIGN #149 #5R6 40
ANDL K2 H@F° REMOVE SIGN MS-BYTE DIVISOR 815 8547 46
Bz R2 SUBTRACT DECIMAL POINTS: DVDN - DVSR 8151
STRA, R GPT SAYE DECIMAL POINT GUOTIENT 8152 8608
*
EORZ RO CLERR RE

Figure 20

TOTAL ASSEMBLY ERRORS = 6688

STRA, K8 DVSR
LODT, B3 LENG+L

CLRM STRA, RB RMDR, R, -
BRNR, R CLRH

*
LODL, RZ LENGHLENG

*

*

N

SHFL LODL, K1 4

SHFB CFSL €
LODI, RY LENGHLENG

SHFL LODF, kB RMDR, R2, -
FRL, R0
STRA, R RMDR, RS
BRNR, K3 SHFL
BORR, ki SHFG

*

*

*
COMP LODL,RL @
*

]
SOURCE

LODL K3 LENG
COMB LODR, F8 RMDR, R, -
COMR, K8 DVSK, R2
BUTR EQ CUMtL

STRZ
BRNR. B3
L7

BCTR, LT

COMe

FREL %

LODL, k3 LENG
LODA, ke RMDR, R, -
SUBA, PB DYSR, R
DfR, RO
STRA, ke
BRNR, RY

SURD

RMDR, R3
SURD

LODH, ke
EIRR, P8
STRA, ke
BCTR, UN

$42
(o0, 3

BORR, RZ
EORZ

LODR, R8
AL, KB
BCFR, 2
LOOR, RZ
COMI, R2
BCFR, EQ
BIRR, 2 $+2
STRA, RZ 00T
LODL, R2 1

BUTR, UN SHFL

SHFL
Fa
UVDN, k8, +
H'F@”
TeDF
QUFT
15
S0
[0FT

TGDP LODA, RZ
BLTRN
10RA, k2
STRA, k2
LOOR, k6
STRA, R8 DVSK
LODI, k@ <DVDN
LODT, R1 OVDN
BSTR, UN ALGN

GOFT
UVFL
Q56N
DVON
SAVE

ASQU

RETC, UN
*
OVFB HALT
OVFL HALT
*

END @

CLERR MS-BYTE DIYISOR

LOAD INDEX REGISTER

CLEAR REMAINDER AND SIGN DYON
BRANCH IF NOT DONE

NUMEER OF DIGITS TO LOOP COUNTER

SHIFT RMOR/DYDN 4 BITS LEFT
INSERTING ZEROES IN LS-BITS

LOAD BIT COUNTER

CLEAR CARRY

LOAD INDEX REGISTER

FETCH BYTE OF RMDR/DVDN

ROTATE LEFT WITH CARRY

RESTURE SHIFTED BYTE

BRANCH IF ALL NOT SHIFTED

BRANCH IF 4 BITS NOT SHIFTED

COMPARE RMOR AND DYSR TO TEST
IF SUBTRACTION IS POSSIBLE.

CLEAR R1; MS-BIT OF Ri BECOMES
1 FOR RMDR < DVSR.

FROE ez

LOAD INDEZ REGISTER

FETCH EYTE OF REMAINDER
COMPARE WITH BYTE OF IYVISOR
ERANCH TF EQUAL

PSL TO kB

SRYE FSLIN RL

BRANCH IF ALL BYTES NOT TESTED

FETCH STATUS OF COMPARISON

ERANCH IF RMDR < D¥SR

SUBTRACT DIVISOR FROM REMAINDER
CLEAR BORROK

LOAC INDEX REGISTER

FETCH BYTE OF REMAINDER
SUBTRACT BYTE OF DIVISOR
DECIMAL RDJUST RESWLT

RESTORE IN REMAINOER

ERANCH IF NOT READY

OVORHLENG-1 FETCH LS-BYTE QUOTIENT

INCRERSE Re

DYDN+LENG-1 RESTORE INCREMENTED QUOTIENT

BRANCH FOR NEXT COMFRARISON

BRANCH TF DIYISION NOT REFDY
CLEAR INDEX REGISTER

FETCH MS-DIGITS QUOTIENT
THKE MSD ONLY

BRANCH IF MSD NOT ZERD
FETCH DECIMAL POINT GQUOTIENT

BRANCH IF DECIMAL POINT=MAX
INCREASE DECIMAL FOINT QUOTIENT
RESTORE

LOAD LOOP COUNTER

BRANCH FOR NEXT DIVIDE LOOP

FETCH DECIMAL POINT GUOTIENT

BRANCH IF NEGRTIVE

RSSEMBLE SIGN+DECIMAL POINT QUOTIENT

STORE SIGN IN MS-BYTE DYDN

FETCH STGN+DECIMAL POINT DIVISOR

RESTORE MS-BYTE DIVISOR

HIGH-ADDRESS QUOTIENT TO R®

LOW- ADDRESS QUOTIENT TO Ri

ALIGN QUOTIENT; SET + SIGN IF
QUOTIENT IS ZERO

RETURN

OVERFLOW; DIVISION BY ZERU
ARITHMETIC OVERFLOW

Silnotics

19

from the world-wide Philips Group of Companies

Argentina: FAPESA I.y.C., Av. Crovara 2550, Tablada, Prov. de BUENOS AIRES, Tel. 652-7438/7478.
Australia: PHILIPS INDUSTRIES HOLDINGS LTD., Elcoma Division, 67 Mars Road, LANE COVE, 2066, N.S.W., Tel. 42 1261.
Austria: OSTERREICHISCHE PHILIPS BAUELEMENTE Industrie G.m.b.H., Triester Str. 64, A-1101 WIEN, Tel. 62 91 11.
Belgium: M.B.L.E., 80, rue des Deux Gares, B-1070 BRUXELLES, Tel 523 00 00.
Brazil: IBRAPE, Caixa Postal 7383, Av. Paulista 2073-S/Loja, SAO PAULO, SP, Tel. 287-7144.
Canada: PHILIPS ELECTRONICS LTD., Electron Devices Div., 601 Milner Ave., SCARBOROUGH, Ontario, M1B 1M8, Tel. 292-5161.
Chile: PHILIPS CHILENA S.A., Av. Santa Maria 0760, SANTIAGO, Tel. 39-40 01.
Colombia: SADAPE S.A., P.O. Box 9805, Calle 13, No. 51 + 39, BOGOTA D.E. 1., Tel. 600 600.
Denmark: MINIWATT A/S, Emdrupvej 115A, DK-2400 KOBENHAVN NV., Tel. (01) 69 16 22.
Finland: OY PHILIPS AB, Elcoma Division, Kaivokatu 8, SF-00100 HELSINKI 10, Tel. 1 72 71.
France: R.T.C. LA RADIOTECHNIQUE-COMPELEC, 130 Avenue Ledru Rollin, F-75540 PARIS 11, Tel. 355-44-99.
Germany: VALVO, UB Bauelemente der Philips G.m.b.H., Valvo Haus, Burchardstrasse 19, D-2 HAMBURG 1, Tel. (040) 3296-1.
Greece: PHILIPS S.A. HELLENIQUE, Elcoma Division, 52, Av. Syngrou, ATHENS, Tel. 915311.
Hong Kong: PHILIPS HONG KONG LTD., Comp. Pept., Philips Ind. Bldg., Kung Yip St., K.C.T.L. 289, KWAI CHUNG, N.T. Tel. 12-24 51 21.
India: PHILIPS INDIALTD., Elcoma Div., Band Box House, 254-D, Dr. Annie Besant Rd., Prabhadevi, BOMBAY-25-DD, Tel. 457 311-5.
Indonesia: P.T. PHILIPS-RALIN ELECTRONICS, Elcoma Division, ‘Timah’ Building, JI. Jen. Gatot Subroto, JAKARTA, Tel. 44 163.
Ireland: PHILIPS ELECTRICAL (IRELAND) LTD., Newstead, Clonskeagh, DUBLIN 14, Tel. 69 33 55.
Italy: PHILIPS S.P.A., Sezione Elcoma, Piazza IV Novembre 3, 1-20124 MILANO, Tel. 2-6994.
Japan: NIHON PHILIPS CORP., Shuwa Shinagawa Bldg., 26-33 Takanawa 3-chome, Minato-ku, TOKYO (108), Tel. 448-5611.
(IC Products) SIGNETICS JAPAN, LTD., TOKYO, Tel. (03) 230-1521.
Korea: PHILIPS ELECTRONICS (KOREA) LTD., Philips House, 260-199 Itaewon-dong, Yongsan-ku, C.P.O. Box 3680, SEOUL, Tel. 44-4202.

Mexico: ELECTRONICA S.A.de C.V., Varsovia No. 36, MEXICC 6, D.F., Tel. 5-33-11-80.

Netherlands: PHILIPS NEDERLAND B.V., Afd. Elonco, Boschdijk 525, NL-4510 EINDHOVEN, Tel. (040) 79 33 33.

New Zealand: Philips Electrical Ind. Ltd., Elcoma Division, 2 Wagener Place, St. Lukes, AUCKLAND, Tel. 867 119.

Norway: ELECTRONICA A/S., Vitaminveien 11, P.O. Box 29, Grefsen, OSLO 4, Tel. (02) 1505 90.

Peru: CADESA, Jr. llo, No. 216, Apartado 10132, LIMA’, Tel. 27 7317.

Philippines: ELDAC, Philips Industrial Dev. Inc., 2246 Pasong Tamo, MAKATI-RIZAL, Tel. 86-89-51 to 59.

Portugal PHILIPS PORTUGESA S.A.R.L., Av. Eng. Duharte Pacheco 6, LISBOA 1, Tel. 68 31 21.

Singapore: PHILIPS SINGAPORE PTE LTD., Elcoma Div., POB 340, Toa Payoh CPO, Lorong 1, Toa Payoh, SINGAPORE 12, Tel. 5388 11.

South Africa: EDAC (Pty.) Ltd., South Park Lane, New Doornfontein, JOHANNESBURG 2001, Tel. 24/6701.

Spain: COPRESA S.A., Balmes 22, BARCELONA 7, Tel. 30163 12.

Sweden: A.B. ELCOMA, Liding6vigen 50, S-10 250 STOCKHOLM 27, Tel. 08/67 97 80.

Switzerland: PHILIPS A.G., Elcoma Dept., Edenstrasse 20, CH-8027 ZURICH, Tel. 01/44 22 11.

Taiwan: PHILIPS TAIWAN LTD., 3rd Fl., San Min Building, 57-1, Chung Shan N. Rd, Section 2, P.O. Box 22978, TAIPEI, Tel. 5513101-5.

Turkey: TURK PHILIPS TICARET A.S., EMET Department, Inonu Cad. No. 78-80, ISTANBUL, Tel. 43 59 10.

United Kingdom: MULLARD LTD., Mullard House, Torrington Place, LONDON WC1E 7HD, Tel. 01-580 6633.

United States: (Active devices & Materials) AMPEREX SALES CORP., 230, Duffy Avenue, HICKSVILLE, N.Y. 11802, Tel. (516) 931-6200.
(Passive devices) MEPCO/ELECTRA INC., Columbia Rd., MORRISTOWN, N.J. 07960, Tel. (201) 539-2000.
(IC Products) SIGNETICS CORPORATION, 811 East Arques Avenue, SUNNYVALE, California 94086, Tel. (408) 739-7700.

Uruguay: LUZILECTRON S.A., Rondeau 1567, piso 5, MONTEVIDEO, Tel. 943 21.

Venezuela: IND. VENEZOLANAS PHILIPS S.A., Eicoma Dept., A. Ppal de los Ruices, Edif. Centro Colgate, Apdo 1167, CARACAS, Tel. 36 05 11.

A3 © N.V. Philips’ Gloeilampenfabrieken
This information is furnished for guidance, and with no guarantees as to its accuracy or completeness; its publication conveys no licence under any patent or other right,

nor does the publisher assume liability for any consequence of its use; specifications and availability of goods mentioned in it are subject to change without notice; it is not
to be reproduced in any way. in whole or in part, without the written consent of the publisher

Printed in The Netherlands 3-77 9399 509 58301

2650 EVALUATION PRIN
CIRCUIT BOARD LEVEL

SYSTEM (PC1001)..................SP50

5!!'"'!““5 2650 EVALUATION PRINTED SP50

CIRCUIT BOARD (PC1001)

APPLICATIONS MEMO

GENERAL

The PC1001 is an evaluation and design tool for the 2650 ® Two Non-Extended 8-bit parallel output ports
microprocessor. Each PC1001 board has a 2650 micro-
processor, 1k bytes of RAM, 1k bytes of PROM loaded
with PIPBUG®, a crystal clock, and sufficient additional
logic to allow the user to exercise all aspects of the 2650
microprocessor. There is a serial |/O port on the board that
can be used to drive a current loop driven terminal or an

® Buffered address, data, and control lines for imple-
menting additional 8-bit parallel I/O ports or ex-
panded memory

® Direct Memory Access (DMA) capability, including
the memory on the PC1001 board

RS232 type terminal. The PC1001 provides the system ® Display indicators on the board for the RUN/WAIT,
engineer with a very flexible design tool from which he can OPREQ, M/IO, R/W control lines, and the Non-
easily develop a pre-production prototype of his product Extended output ports

designed around the 2650 microprocessor, ® Vectored interrupts

FEATURES ® A program debug module (called PIPBUG) written

The PC1001 has many features that make it a valuable for use with the 2650

design aid. The most noteworthy features are: *PIPBUG — a program debug module
® The Signetics 2650 N-MOS, 8-bit microprocessor DESCRIPTION

1k — bytes of RAM memory The PC1001 is configured as a very flexible, general purpose

[]

® 1k — bytes of PROM memory microprocessor board to allow the system designer to easily
® A 1MHz crystal oscillator expand memory, implement input/output functions and
) execute programs written for the 2650. A functional des-
® A serial 1/0 channel cription of the PC1001 is given in this section. A functional
® Two Non-Extended 8-bit parallel input ports block diagram of the PC1001 is shown in Figure 1.

PC 1001 BLOCK DIAGRAM

=1 o

SELECT SEL kX8 SEL kX8
DECODE PROM RAM
xc 1 A3
2650 /Txé s 48
Le 8 8
1y
J 7
ADDRESS i / 15
BUFFER ABUSO — ABUS14 7
1

o
(]
=
(s}
O
DATA DBUSO — DBUS7 8y 2
BUFFER 4]
(8]
11 8
=]
w
1 NON- NON:- NON- NON- o
EXTENDED EXTENDED EXTENDED EXTENDED £
CONTROL INPUT OUTPUT INPUT OUTPUT o
LINE 1 1 2 2 @
BUFFERS] °
CONTROL
DECODE , j1 8 1}’ 8 }'1 8 1'{/8 8,
. PROM 73 8%
5 (32X8) 8'1
7
8y
+
SERIAL
/ 1/0 4,
75 DRIVER/ 7
- RECEIVER
\ ”',/
*OPREQ, RUN/WAIT, INTACK, WRP, R/W, M/i0, DMA, PAUSE, INTREQ, RESET, OPACK
FIGURE 1

SIGNETICS 2650 EVALUATION PRINTED CIRCUIT BOARD (PC1001) = SP50

CpPU

The 2650 is the heart of the PC1001, executing instruc-
tions from memory and controlling the 1/0O functions. The
address, data, and control lines of the 2650 are buffered
and available at the edge connector of the PC1001. The on-
board bus drivers allow the user to build a microprocessor
system around the PC1001 without additional buffering.
The tri-state function of the 2650 address and data busses
is transferred to the buffer gates which drive the lines used
by the system designer. The address and data bus buffers
are in the tri-state mode whenever the OPREQ line from
the 2650 is a logic ZERO.

MEMORY

The 1024 bytes of read only memory are implemented with
825129 256X4 bipolar PROM'’s. The PROM'’s are accessed
by addressing the first 1024 bytes of the address space
(locations 01 — 3FF1g). The PROM’s are mounted in
sockets on the PC1001 board and are loaded with the
PIPBUG debug program. The sockets on the PC1001 board
allow the user to put different 825129 PROM'’s in the first
1k bytes of the memory address space when developing
a prototype system.

The 1024 bytes of random access memory are implemented
with 2606 256X4 MOS RAM’s. The RAM'’s are accessed by
addressing the second 1024 bytes of the address space
(locations 40016 — 7FF 1g).

PARALLEL I/O

The buffered address, data, and control lines available to the
user of the PC1001 allow any of the 2650 parallel 1/0
modes to be implemented, or to expand memory beyond
the 2k bytes already on the board. The extended |/0O instruc-
tions provide device select capability for 256 1/0 functions
by decoding the least significant 8-bits of the address bus
(ABUS 0 — ABUS 7). The buffered data bus is a bi-
directional tri-state bus so that input devices may use the
data bus by driving it with tri-state drivers.

If the Non-Extended 1/O instructions are used, two latched
output ports and two gated input ports are already provided
on the PC1001, and no control line decoding is necessary.

When the 2650 executes memory reference instructions or
Non-Extended 1/0 instructions, the control decode PROM
generates the operation acknowledge signal (OPACK) in
response to operation request (OPREQ). When the 2650
executes Extended 1/O instructions, the selected 1/0 device
must generate OPACK. By requiring the 1/0 device to return
the OPACK signal, the PC1001 gives the user the flexibility
of connecting peripheral functions that may require more
than one microsecond to respond to an |/O request. If the
Extended 1/O functions are all faster than one microsecond
they will not slow down the 2650, and OPACK may be
tied to logic ZERO. v

SERIAL I/O0

The 2650 is equipped with a SENSE input and a FLAG
output. These two functions provide a serial 1/O data path
directly into the 2650. Part of the PIPBUG PROM program
4

is dedicated to implementing an asynchronous serial com-
munications port for the PC1001. The program checks
the SENSE line for a start bit from the serial device to
achieve synchronization. Once a start bit is detected, the
2650 shifts the next eight character bits into register RO.
The PC1001 is designed for full duplex serial 1/0, and will
echo the transmitted character back to the serial device
using the FLAG output. The timing loops that determine
when to sample a character bit are written for a ten
character per second serial data rate (110 baud), but the
2650 is capable of handling much higher serial data rates.

The serial 1/0 device used with the PC1001 may be a 20
milliamp current loop device, or it may be RS232 compat-
ible (voltage driven). A current loop driver and receiver,
and an RS232 driver and receiver are on the PC1001
board. The type of driver and receiver is selected with
a wire jumper. If the RS232 driver and receiver is used,
external *15 volt power supplies are required. If the
current loop driver and receiver is used, the PC1001 re-
quires only a single +5 volt power supply.

The PIPBUG debug program includes a read paper tape
control function. The program sets a bit in the output
register of Non-Extended 1/0 port C (WRTC instruction)
to advance the tape reader one character at a time. This
function can be used by modifying a standard teletype to
include a tape reader control relay and driving it with the
TTY TAPE READER OUT SIGNAL.

It should be pointed out that the tape reader control bit
and bit 7 of the Non-Extended 1/O port (OPC7) are the
same and caution should be exercised to avoid a conflict
between the two functions.

CLOCK

The clock circuit on the PC1001 is a hybrid circuit crystal
oscillator that runs at a frequency of 1.000 MHz. Instruc-

tion loops are used to determine bit times and the crystal
controlled clock minimizes errors due to changes in the

system clock.

The clock input to the 2650 that is driven by the crystal
controlled clock (pin 38) is available at the edge connector
of PC1001. If the user chooses to drive the PC1001 with an
external clock he must first remove the crystal clock
circuit. The clock input to the 2650 is fully TTL compatible
and requires no special drive circuitry.

DISPLAYS

Minature LED indicator displays are driven by the three
basic control lines (OPREQ, M/IO, and R/W), and the
Non-Extended output latches. A logic ONE state on the
control lines, or in the output latches, “‘lights’’ the corre-
sponding LED. The minature LED’s are mounted on the
PC1001 board and are shown in Figure 2.

SIGNETICS 2650 EVALUATION PRINTED CIRCUIT BOARD (PC1001) » SP50

PRINTED CIRCUIT BOARD LAYOUT

RESET [
“PIPBUG"” — CONTROL PROGRAM 1k BYTES RAM
o I = I) I =Y e —
1 2 3 4 5 6 7 8 9
s1 8 8 8 8 €2
8 2 2 2 2 2 2 2 2 +
T § 5 § § 6 6 5 6
c1 2 1 7 1 1 0 0 0 0
3 2 2 2 2 6 6 6 6
" ? s 5 9 9
A
A
B
g]
e - £ = =1 - =) = ==Y == < ABUS
4 o Bl on ‘VT 12 13 14 15 [~ 16 [17 [~ 18 Z
(=]
%) S 8 8 8
& 8 3 2 2 2 2 2 2 a
T 5 5 5 5 6 6 6 4
2 7 7 7 7 0 0 0 3
N I 2 2 2 2 6 6 6 9
DBUS 9 9 9 9 2
g — L] L | L L — L
g
g MEMORY CONTROL ADDRESS BUFFERS DATA BUFFERS CLOCK
2 = =) o 23 =) —)
0 19V 20 21V 2rv ot 24V 25V 26 [V 27
] ; ; ; ; ; : f
3 2 3 3 2 2 : !
0 0 7 7 6 6]
I— - S A
L L L] L]
— 1/0
1 2650 RUN/WAIT CONTROL
33
= =" — [= 5 2 = =)
28 29 30~ N[32 [~] 38~ 35 [~
7 | r3lTRs | 5 8
! i 4 8 o | |2[=[] | 2 i 2
0 0 0 T T —siT 0 3 S
0 8 3 g g FER A 8 8 %
_— R2 L I 3
—D— S—— | S— —
d“s R7 —J— —}-D20
— R4a——1 T3-c4
OUTPUT PORTS INPUT PORTS
= =) AEIENE e =) [) = o
36 37 ‘S:’ 38 [V 39 40 a1 a2 [h 43
. , .
7 7 acat 7 7 8 8 8 R1
A 4 Sato 3 4 T T T 1
7 7 7 7 9 9 9 !
5 5 R 5 5 8 8 8
TR L
L Aracal L L L | L
C3
T0
FIGURE 2

DMA

Direct access to memory by an external device (DMA) is
easily accomplished with the PC1001. An input to the
board is provided for direct memory access and the signal
name of that input is DMA (PC1001 pin 14). When DMA is
pulled “low’”” the 2650 finishes executing the current
instruction and enters the wait state. To avoid interrupting
a memory or 1/0 transfer in progress the DMA line should
not be pulled “low’” while OPREQ is “"high’’. When the
RUN/WAIT lines goes ‘‘low’’ the external device may drive
the address, data, and control lines (except OPREQ, and
RUN/WAIT) to accomplish the necessary DMA transfer.

An external operation request line (OPEX) is provided for
DMA transfers to the memory on the PC1001 board. Since
OPREQ is only driven by the 2650, and is used in the
memory select decoders, the user must. drive OPEX to
access the memory on the PC1001.

Because the DMA function is implemented with the pause
feature of the 2650, and since the 2650 is a static device,
the length of time that the DMA device may be active for
any one transfer is limited only by the other processing
responsibilities of the 2650.

INTERRUPTS

The 2650 has a true vectored interrupt system. The user
must firstdrive the interrupt line (INTREQ) on the PC1001,
then wait to be acknowledged (INTACK), and finally drive
the data bus with a 7-bit signed displacement relative to
page zero, location zero. The displacement vector may also
indicate indirect addressing, allowing the interrupt service
sub-routine to be located anywhere in the 32k-byte add-
ress space.

5

SIGNETICS 2650 EVALUATION PRINTED CIRCUIT BOARD (PC1001) = SP50

INTERRUPTS (Continued)

The INTREQ line may be driven by several interrupting
devices in a “wired OR" configuration. When a priority
exists between the various interrupting devices, and to
prevent confusion from multiple simultaneous interrupts,
the user must arrange the interrupt hardware to resolve
priority and simultaneity conflicts.

The PC1001 board comes with PIPBUG stored in the first
1k-bytes of .ROM and therefore the user cannot store an
interrupt service subroutine or an indirect address in this
part of the memory address space. But the interrupt dis-
placement vector may be a negative number referring to
the last 64 locations in page zero (1FBF4g to 1FFFqg).
If an indirect address or interrupt service subroutine is
placed in one of the last 64 locations of page zero, the
user must also provide external memory at the locations
used (the PC1001 has only 2k-bytes of memory on the
board).

There is another way to accomplish a ““link”" to an interrupt
service subroutine through the ROM on the PC1001. It is
possible that PIPBUG instructions themselves could pro-
vide an indirect address to the second 1k-bytes of RAM on
the PC1001 board. An example of a very useable indirect
address to an interrupt service routine may be found at
locations 81 and 91 of PIPBUG. If these locations are used
as an indirect address, the program would branch to loca-
tion 4771 where it would expect to find a subroutine to
service the active interrupt.

A timing diagram for interrupt processing is shown in Figure
3, as well as the format for the displacement vector.

INTERRUPT TIMING

LOGIC

The logic on the PC1001 board is uncomplicated and very
general purpose. It includes:

1. 2650 CPU and memory

2. Address bus, and data bus drivers and receivers
3. Control line drivers and receivers

4, Control line decode

5. Memory select decode

6. Serial I/0 transmitter and receiver

7. Non-Extended parallel 1/0 latches and receivers

The PC1001 logic drawing will be referred to during this
description and is shown in Figure 4. The integrated circuit
numbers used in Figure 4 may be cross-correlated to those
used on Figure 2 for locating an integrated circuit on the
PC1001 board.

CPU and MEMORY

CPU — The address bus, and the data bus from the 2650
are buffered for easy system expansion. With the exception
of the address tri-state control line (ADREN) and the data
bus tri-state control line (DBUSEN), all of the control lines
from the 2650 are also buffered. The ADREN and DBUSEN
lines are tied ““low” on the PC1001 board, and the tri-
state function of the address, data, and control lines is
fulfilled by the buffers.

The clock input is driven directly from the K1100A clock
circuit (IC #27). The clock output is available off-board on
PC1001 pin 23 (the signal name is CLOCK). The K1100
clock circuit has a frequency stability of £.01% and will
drive 10 standard TTL (7400 series) unit loads. The 2650

USER
SUPPLIED

DISPLACEMENT

_SIGNED DISPLACEMENT
(+63 TO -64)

LAST CYCLE o~ —— e
OF CURRENT — — —/ N
INSTRUCTION
cLock To m T2 T0
|
OPREQ ‘
— — §<—‘|Rs
INTREQ ‘ y
INTACK [
DBUS X
INDIRECT BIT—— e
I
2\ :
7 6 5 4 3 2 1 0
FIGURE 3

SIGNETICS 2650 EVALUATION PRINTED CIRCUIT BOARD (PC1001) = SP50

PC1001 LOGIC DIAGRAM

€+ §5C-:0-00%,

i
vl a8

T RIS

tQDg avwang

i %

FIGURE 4

SIGNETICS 2650 EVALUATION PRINTED CIRCUIT BOARD (PC1001) = SP50

CPU and MEMORY (Continued)

is the only load the clock must drive on the PC1001, using
only 10 gamps of its drive capability.

Memory — The memories are of two types: 825129 256X4
PROMs, and 2606 256X4 RAMs. All 16 memory IC’s
(IC’s 2-9, and 11-18) are addressed by the least significant
8-bits of the buffered address bus. The memories drive
and receive the data bus through 8T 26 tri-state transceivers
to prevent an expanded system from presenting too great
a capacitive load for the MOS memories.

The PROM memories (IC’s 2-5, and IC’s 11-14) are plugged
into sockets and come programmed with PIPBUG. Any
user's program may be stored in these PROM locations
if PIPBUG is not required.

When the PC1001 is used to develop programs, and PIPBUG
is resident in the first 1k-bytes of memory space, all of the
1k-bytes of RAM memory is available for use except the
first 64 bytes (4001g to 43F4g). The 64 locations are used
by PIPBUG for temporary storage.

ADDRESS AND DATA BUS DRIVERS AND RECEIVERS

The data bus (DBUSO - DBUS7) is buffered with 8T26 quad
tri-state transceivers (IC’'s 24 and 25). These transceivers
are inverting, and therefore the data bus transferred off of
the PC1001 board is negative true (DBUSO - DBUS7). The
tri-state transceivers are controlled by RE1 (receiver con-
trol) and DE1 (driver control) from the control decode
PROM (IC 35). The receiver control RE1 is a negative true
signal (active “low’’) and has the following logic equation:

RE1=OPREQ e R/W

The driver control DE1 is a positive true signal and has the
following logic equation:

DE1=0OPREQ e R/W

The logic equations reflect the fact that the 2650 drives the
external data bus (DBUSO - DBUS7) during all write opera-
tions (memory or |/0), and receives the external data bus
during all read operations. But, when OPREQ is not a
""high’”” the external data bus transceivers are in the tri-
state mode.

The memory on the PC1001 board is buffered from the
user’'s data bus (DBUSO - DBUS7) with 8T26 quad tri-
state transceivers. These transceivers are inverting so that
information stored in memory is not complimented relative
to the 2650. These transceivers are controlled by RE2
(receiver control) and DE2 (driver control) from the
memory select decode logic. The logic for these control
lines is shown- below IC 20 (IC's 28 and 29) in Figure 4
and they have the following logic equations:

RE2 = MEMSEL e R/W
DE1=MEMSEL e R/W

The RE2 control line is a negative true signal and is active
when the memory on the PC1001 is selected to be written
into. The DE1 control line is positive true and active when
the memory on the PC1001 is selected to be read from.

The address bus is buffered with 8T97 tri-state buffers
(IC's 21, 22, and 31). These buffers are in the tri-state
mode whenever OPREQ is inactive.

CONTROL LINE DRIVERS AND RECEIVERS

The two control lines OPREQ and RUN/WAIT are buffered
with 8T97 tri-state buffers (IC 32), but are never placed in
the tri-state mode.

The control lines INTACK, WRP, R/W, and M/IO are also
driven by 8T97 tri-state buffers (IC 32), and are switched to
the tri-state mode when the DMA line is pulled “low”’. The
pause input to the 2650 may be activated by driving the
DMA line (PC1001 pin 14) or the PAUSE line (PC1001
pin 27) “low".

The interrupt request line and the reset line to the 2650 are
buffered by TTL AND gates (IC 33). The reset switch on
the PC1001 (upper left corner of Figure 2) is ““wire ORed"”
with the RESET line to the PC1001 board (PC1001
pin 25).

The operation acknowledge line to the 2650 (OPACK) is
buffered with a TTL AND gate (IC 33), and has as its
inputs an external acknowledge (OPACK, PC1001 pin 22)
and an internal acknowledge (OPK). The internal acknow-
ledge is generated for all memory access cycles and Non-
Extended I/O cycles initiated by the 2650. For Extended
1/0 cycles the external device must generate the external
operation acknowledge (OPACK).

CONTROL LINE DECODE

A control line decoder is implemented with a 32X8 PROM
(82S123) to generate secondary control lines used by the
logic supporting the 2650. The primary control lines from
the 2650 (R/W, OPREQ, M/I0 E/NE, and D/C) are used to

+ ~ i
address the PROM, and cach address represents one combi-

nation of the primary control lines. Stored at each memory
location are eight bits, each one of which represents the
logical state of a secondary control line. There are five
address inputs to the PROM, and the 32 (25) possible
addresses exhaust all of the logical combination of the
primary control lines. The secondary control lines, their
logic equations, and their functions are given in Table 1.
Table 2 shows the contents of each of the 32 locations of
the PROM. The control line decode PROM is shown in
Figure 4 (IC 35).

MEMORY SELECT DECODE

The memory select decode logic is shown in Figure 4
(IC's 19, 20, 28, 29, 30 and 34). The 2k-bytes of memory
are implemented with 256X4 bit memory chips. The
memory chips are arranged into eight 256-byte sections.

SIGNETICS 2650 EVALUATION PRINTED CIRCUIT BOARD (PC1001) = SP50

The ninth, tenth, and eleventh bits of the address bus
(ABUS8-ABUS10) are decoded to select one of the eight
256-byte sections of memory. The one-of-eight decoder
(IC 20) is enabled by MEMSEL, which has the following
logic equations:

MEMSEL = (OPREQ + OPEX)
® M/TO e ABUS11 @ ABUS12 ¢ ABUS13 ® ABUS14

The MEMSEL line is also used to enable the 8T26 quad
tri-state transceivers that buffer the memory on the PC1001
from the external data bus (DBUSO-DBUS7).

SERIAL 1/0 TRANSMITTER AND RECEIVER

A serial 1/O port is implemented on the PC1001 with the
flag and sense line of the 2650. The PIPBUG program han-
dles the serial 1/O using software timing loops to sample

CONTROL LINE DECODE PROM DESCRIPTION

the SENSE input and build eight bit ASCII characters. The
PC1001 is capable of interfacing to a current loop type
terminal, or an RS232 compatible terminal.

The current loop driver uses an open collector NAND gate
(IC 34) as the switching element. The 20 milliamp source
is a 220§ resistor connected to +5 volts on the PC1001
(PC1001 pin S), and the open collector NAND gate either
provides a return path for the 20 milliamps (NAND output
“on’’) or it does not (NAND output “off”). The current
loop receiver is a CMOS hex inverter (1C 30) with the input
pulled to +5 volts through a 2.7k §2 resistor (PC1001 pin P).
The teletype transmitter is a contact closure and connects
the input of the CMOS inverter to the receiver return line
(PC1001 pin R), which is tied to ground on the PC1001
board.

The RS232 driver is an 8T15 EIA Line Driver (IC 26),
and the RS232 receiver is an 8T16 EIA Line Receiver
(IC 43). The 8T 15 is the only chip on the PC1001 that does
not operate on the +5 volt power supply, and 15 volt
power supplies are specified for this driver.

SIGNAL | irpyt | PIN # LOGIC EQUATION FUNCTION

NAME

WOPD BO 1 WOPD = OPREQ e M/IO & E/NE e D/C « R/W | LOADS NON-EXTENDED OUTPUT
LATCH, PORT D

EIPD* B1 2 EIPD = OPREQ e M/IO o E/NE o D/C « R/W | ENABLES NON-EXTENDED INPUT
GATES, PORT D

EIPC* B2 3 EIPC = OPREQ « M/IO E/NE o D/C « R/W | ENABLES NON-EXTENDED INPUT
GATES, PORT C

WOPC B3 4 WOPC = OPREQ e M/IO o e D/C e R/W | LOADS NON-EXTENDED OUTPUT
LATCH, PORT C

OPK* B4 5 OPK = OPREQ [(M/IO) + (M/10 e E/NE)] RETURNS OPACK FOR ALL OPREQ
EXCEPT EXTENDED 1/0

R/W B5 6 R/W = R/W INVERTS R/W

DE1 B6 DE1=0PREQ e R/W DRIVES EXTERNAL DATA BUS (DBUSO
— DBUS?)

RE1* B7 9 RE1=0OPREQ e R/W ENABLES RECEIVERS OF EXTERNAL
DATA BUS (DBUSO — DBUS7)

*NEGATIVE TRUE SIGNALS

TABLE 1

SIGNETICS 2650 EVALUATION PRINTED CIRCUIT BOARD (PC1001) = SP50

CONTROL LINE DECODE PROM

2 @
w 5
§ INPUT OUTPUT &
< A4 A3 A2 A1 AO 7 6 5 4 3 2 1 0 3
0 0 0 0 0 0 1 0 1 1 0 1 1 0 B6
1 0 0 0 0 1 1 0 0 1 0 1 1 0 26
2 0 0 0 1 0 0 o 1 0 0 0 1 0 22
3 0 0 0 1 1 1 1 0 o 1 1 1 0 CE
4 0 0 1 0 0 1 0 1 1 0 1 1 0 B6
5 0 0 1 0 1 1 0 0 1 0 1 1 0 96
6 0 0 1 1 0 0o o 1 0 0 1 0 0 24
7 0 0 1 1 1 1 1 0 0 0 1 1 1 c7
8 0 1 0 0 0 1 0 1 1 0 1 1 0 B6
9 0 1 0 0 1 1 0 0 1 0 1 1 0 96
10 0 1 0 1 0 0 o 1 1 0 1 1 0 36
1 0 1 0 1 1 1 1 0 1 0 1 1 0 D6
12 0 1 1 0 0 1 0 1 1 0 1 1 0 B6
13 0 1 1 0 1 1 0 0 1 0 1 1 0 96
14 0 1 1 1 0 0 0 1 1 0 1 1 0 36
15 0 1 1 1 1 1 1 0 1 0 1 1 0 D6
16 1 0 0 0 0 1 0 1 1 0 1 1 0 B6
17 1 0 0 0 1 1 0 0 1 0 1 1 0 96
18 1 0 0 1 0 0 0 1 0 0 1 1 0 26
19 1 0 0 1 1 1 1 0 o0 0 1 1 0 c6
20 1 0 1 0 1 1 0 0 1 0 1 1 0 B6
21 .| 1 0 1 0 1 1 0 0 1 0 1 1 0 96
22 1 0 1 1 0 0 o0 1 0 0 1 1 0 26
23 1 0 1 1 1 1 1 0 o 0 1 1 0 c6
24 1 1 0 0 0 1 0 1 1 0 1 1 0 B6
25 1 1 0 0 1 1 0 0 1 0 1 1 0 96
26 1 1 0 1 0 0 0 1 0 0 1 1 0 26
27 1 1 0 1 1 1 1 0 o0 0 1 1 0 Ccé6
28 1 1 1 0 0 1 0 1 1 0 1 1 0 B6
29 1 1 1 0 1 1 0 0 1 0 1 1 0 2
30 1 1 1 1 0 0 0 1 0 0 1 1 0 26
31 1 1 1 1 1 1 1 0 0 0 1 1 0 (o)
M/10 E/NE D/C 0 R/W REl DEI RW O w E E w
P P 0] | 0
R K P P P P
E cC ¢ D D
a

TABLE 2

The current loop driver/receiver pair or the RS232 driver/
receiver pair is selected by a hardwire jumper on the PC1001
board. The connection of these jumpers is described in
Table 3, and shown in Figure 4 (2650 pin 40/FLAG,
2650 pin 1/SENSE).

SERIAL 1/0 DRIVER/RECEIVER MODE

2650
J
FUNCTION UMPER DESCRIPTION
FLAG A-B CURRENT LOOP DRIVER
FLAG A-C RS232 DRIVER
SENSE E-D CURRENT LOOP RECEIVER
SENSE F-D RS232 RECEIVER

TABLE 3
10

PARALLEL I/O LATCHES AND RECEIVERS

The logic used to implement the two parallel I/O ports on the
PC1001 is identical. The output ports are 7475 quad
bistable latches (IC's 36, 37, 38, and 39), and are loaded
when a Non-Extended write I/O instruction is executed
(WRTC, WRTD). The input ports use 8T98 tri-state high
speed hex inverters (IC's 40, 41, and 42), and are gated on
the external data bus (DBUSO - DBUS7) when a Non-
Extended read 1/O instruction is executed (REDC, REDD).

The control signals used to activate the tri-state gates (EIPD,
and EIPC) are generated by the control line decode PROM
(IC 35).

SIGNETICS 2650 EVALUATION PRINTED CIRCUIT BOARD (PC1001) = SP50

The control signals used to load the output latches are desig- The output latches drive LED’s on the PC1001 board. A
nated COPC and COPD, and have the following logic logic ONE from the 2650 lights the corresponding LED.
equations: The output latches are loaded from the external data bus
COPD = WRP « WOPD (DBUSO - DBUS7), and to obtain the required inversion at
COPC = WRP « WOPC ’Et\e latch output (OPDO - OPD7, and OPCO - OPC7) the

Q pin is used.

The WRP signal is the “‘write pulse’” from the 2650, while
the WOPD and WOPC signals are generated by the control
line decode PROM (IC 35).

APPENDIX
WRITE TIMING

AW -X X_
WRP /4
AAA \AAAA E
AT
ABUS —XX VALID ADDRESS (MEMORY ONLY) z
MW~ <

VALID DATA m: -

DE1 __[[73 \\} |\ W

w
w
/ £
RE2 N\ y /77 .
[5
e TR\ 27 &
MRW /; ;\
M/i0 _ :X)C —— G
[a]
WOPC, WOPD /7/ Worc~D/e - Low WOPD = D/T = HIGH \Y\ £ g
xX =z
o
COPC, COPD y/4 A\N 2 g
=4
E/NE - X) G

TcLock = 800 nsec

11

SIGNETICS 2650 EVALUATION PRINTED CIRCUIT BOARD (PC1001) = SP50

READ TIMING

NON-EXTENDED
1/0 READ

OPREQ
oPK
R/W : }\ / C : :
[
WRP 9
— - w
HI-Z ©
ABUS AOO«\ VALID ADDRESS (MEMORY ONLY) m—
DE1 - \ -
RE1 N\ } V744
/

- A _——
wio _X /), Gy
DE2 y//4 / \\\ 2

>
RE2 _ -8

z
ce SN '/ =
DBUS W VALID DATA W
wio - X D
EIPD, EIPC R\, EIPD - D/C - HIGH EIPC = D/C= LOW ﬁ
BBUS - g VALID DATA \’m _—
EINE -X) G

TcLock = 800 nsec

EXTENDED 1/0 TIMING

OPREQ _/2 E

ABUS ———W VALID DEVICE SELECT (ABUSO — ABUS 7) m—-

OPACK \ / Q

M/10 x x —_—

€/NE X) GO

R/W - X - X: ——

s TZIZTTTIITTIIIIIC DX .
8

-—

DE1

RE1 V//

Aw X__—

DBUS — xx /“—’»C —_———
E
o

DE1 2

RE1

WRP

12

SIGNETICS 2650 EVALUATION PRINTED CIRCUIT BOARD (PC1001) = SP50

POWER REQUIREMENTS

+5 VOLT POWER SUPPLY: +15 VOLT POWER SUPPLIES:
LINE REGULATION — 0.1% LINE REGULATION — 0.1%
LOAD REGULATION — 0.1% LOAD REGULATION — 0.1%
RIPPLE — 10 millivolts (MAX) RIPPLE — 10 millivolts (MAX)
RESPONSE — 30usec (MAX) RESPONSE — 30usec (MAX)
CURRENT — 2 amps CURRENT — 50 milliamps
PARTS LIST
IC# PART # TYPE QTY
28 7400 QUAD 2-INPUT NAND 1
29, 33 7408 QUAD 2-INPUT AND 2
19 7430 8-INPUT NAND 1
34 7438 QUAD 2-INPUT NAND OPEN COLLECTOR 1
36, 37, 38, 39 7475 QUAD BISTABLE LATCH 4
26 8T15 E1A DRIVER (RS232) 1
43 8T16 E1A RECEIVER (RS232) 1
1,10 8726 QUAD BUS DRIVER/RECEIVER 4
24,25
40, 41, 42 8798 HEX HIGH SPEED INVERTER 3
20 8250 1 OF 8 DECODER
6,7,8,9 2606 256X4 NMOS RAM 8
15, 16, 17, 18
30 4049 HEX INVERTER (CMOS) 1
35 825123 32X8 BIPOLAR PROM 1
2 825129 PIPBUG PROM CK267 1
1 825129 PIPBUG PROM CK268 1
3 825129 PIPBUG PROM CK269 1
12 825129 PIPBUG PROM CK270 1
4 825129 PIPBUG PROM CK271 1
13 825129 PIPBUG PROM CK272 1
5 825129 PIPBUG PROM CK273 1
14 825129 PIPBUG PROM CK274 1
23 2650 MICROPROCESSOR 1
27 MOTOROLA XTAL OSCILLATOR 1
K1100A
D20 INO14 DIODE 1
D1-D19 DIALCO LED INDICATOR 19
555-3007
S1 GREYHILL MINIATURE, PUSH BUTTON SWITCH 1
39-201
(1Ic 23)* VERMON 40-PIN DIP SOCKET 1
H23-20302
{ic2, 3 AMPHENOL 16-PiN DiP SOCKET 8
4,511, 12, 821-25011-164
13, 14)

*#'s in parenthesis indicate the |C’s that are plugged into the listed socket.

13

SIGNETICS 2650 EVALUATION PRINTED CIRCUIT BOARD (PC1001) = SP50

PARTS LIST (Continued)
IC# PART #

(IC 27) AMPHENOL

821-25011-144

C1,C2 230-1250-004-230

C3

- EMCON
5021ES50RD104M

C4

R4 230-0910-332-230

R3

R7

R5, R6 230-0910-297-230

R1, R2 230-0910-282-230
AMPHENOL
225-804-50

RS232C STANDARD CONNECTOR

The RS232 Electronic I ndustries Association (EIA) standard
for “interface between terminals and communications
equipment using serial binary data interchange’’ describes
a commonly used signal definition and connector pin
assignment. The table below lists the pin numbers and
signal names most frequently used by. data terminals.

PIN # DESCRIPTION

PROTECTIVE GROUND
TRANSMITTED DATA
RECEIVED DATA

CLEAR TO SEND

DATA SET READY

SIGNAL GROUND

RECEIVED LINE SIGNAL DETECTOR

20 DATA TERMINAL READY

WO NO O WN =

Transmitted Data (pin 2) is received by the PC1001, there-
fore pin 2 of the RS232 connector is routed to the SENSE
input of the 2650. Received Data (pin 3) is transmitted
from the PC1001, therefore pin 3 of the RS232 is routed
to the FLAG output of the 2650.

The signals on pins 5, 6, 8, and 20 are used between data
terminals and communications MODEMs. Since the PC1001
does not provide these ‘‘handshake’” lines they can be
simulated by shorting them all together. In this configura-
tion the Data Terminal Ready line drives the other 3 lines
to the proper state for enabling the communication channel.

14

TYPE

14-PIN DIP SOCKET

4.7u FARAD CAP

0.1 FARAD CAP

0.047u1 FARAD CAP
61Kr, % WATT RES
10Kr, % WATT RES

7.4Kr, Va WATT REST

1Kr, % WATT RES
220r, Vs WATT RES

100 PIN P.C. EDGE CONNECTOR

QTtYy

ey

—_ N -

This is not required for all data terminals (not teletypes),
but is required for some.

Further information on RS232C specifications can be
obtained from the EIA RS-232-C Standard available from
the Electronic Industries Association in Washington D.C.

The type of connector commonly used for RS232 compat-
ible data terminals is a 25-pin TRW Cinch type connector
of the DB25 series.

TELETYPE CONNECTION

Connection to a teletype may be made at the terminal strip
inside of the teletype. The pin numbers and signal names
are listed in the table below.

PIN # DESCRIPTION
6 RECEIVER -
(TTY SERIAL IN -)
7 RECEIVER +
(TTY SERIAL IN +)
3 TRANSMITTER -
(TTY SERIAL OUT -)
4 TRANSMITTER +
(TTY SERIAL OUT +)

The teletype is a 20 milliamp current loop type of receiver
and a contact closure type of transmitter. The PIPBUG
debug program on the PC1001 board communicates with
the teletype in a full duplex mode, echoing characters as
they are received.

SIGNETICS 2650 EVALUATION PRINTED CIRCUIT BOARD (PC1001) = SP50

EDGE CONNECTOR SIGNAL LIST

PIN #

O N D WN-—=

B WWWWWWWWWWNDNNNNNNNNNS =2 = @@aa oo

*NC = NO CONNECTION

FUNCTION
GND

WRP
RUN/WAIT
OPREQ
M/TO
OPACK
CLOCK
OPEX
RESET
INTREQ
PAUSE
NC*
NC*
NC*
NC*
NC*
ABUS 11
ABUS 13
ABUS 12
ABUS 14
ABUS 9
ABUS 10
ABUS 8
ABUS 7
ABUS 6
ABUS 5
ABUS 3
ABUS 0
ABUS 1
ABUS 4
ABUS 2
+15V
-15V
+5V

PIN #

TABLE 4

wlolalolTIIN<S X S < C *® T0T 33 A TTQ@HROAO0TOINLXS<SCANIIZZIrACITMOO®>

FUNCTION

GND

GND

NC

OPD O

OPD 1

OPD 2

OPD 3

OPD 4

OPD 5

OPD 6

OPD 7

COPD

TTY SERIAL IN +
TTY SERIAL IN -
TTY SERIAL OUT +
TTY SERIAL OUT -
RS232 GROUND
RS232 OUTPUT

TTY TAPE READER OUT -
TTY TAPE READER OUT +

RS232 INPUT
COPC
OPCO
OPC 1
OPC 2
OPC 3
OPC 4
OPC 5
OPC 6
OPC 7
EIPC
IPD O
IPD 1
IPD 2
IPD 3
IPD 4
IPD 5
IPD 6
IPD 7
IPCO
IPC 1
IPC 2
IPC 3
IPC 4
IPC 5
IPC 6
IPC7
+15V
-15V
+5V

15

from the world-wide Philips Group of Companies

EUROPEAN SALES OFFICES

Austria: Osterreichische Philips, Bauelemente Industrie G.m.b.H., Zieglergasse 6, Tel. 93 26 11, A-1072 WIEN.
Belgium: M.B.L.E., 80, rue des Deux Gares, Tel. 523 00 00, B-1070 BRUXELLES.

Denmark: Miniwatt A/S, Emdrupvej 115A, Tel. (01) 69 16 22, DK-2400 KOBENHAVN NV.

Finland: Oy Philips Ab, Elcoma Division, Kaivokatu 8, Tel. 1 72 71, SF-00100 HELSINKI 10.

France: R.T.C., La Radiotechnique-Compelec, 130 Avenue Ledru Rollin, Tel. 355-44-99, F-75540 PARIS 11.
Germany: Valvo, UB Bauelemente der Philips G.m.b.H., Valvo Haus, Burchardstrasse 19, Tel. (040) 3296-1, D-2 HAMBURG 1.
Greece: Philips S.A. Hellénique, Elcoma Division, 52, Av. Syngrou, Tel. 915 311, ATHENS.

Ireland: Philips Electrical (Ireland) Ltd., Newstead, Clonskeagh, Tel. 69 33 55, DUBLIN 14.

Italy: Philips S.p.A., Sezione Elcoma, Piazza IV Novembre 3, Tel. 2-6994, 1-20124 MILANO.

Netherlands: Philips Nederland B.V., Afd. Elonco, Boschdijk 525, Tel. (040) 79 33 33, NL-4510 EINDHOVEN.
Norway: Electronica A.S., Vitaminveien 11, Tel. (02) 15 05 90, P. O. Box 29, Grefsen, OSLO 4.

Portugai: Philips Portuguesa S.A.R.L., Av. Eng. Duharte Pacheco §, Tel. 68 31 21, LISBOA 1.

Spain: COPRESA S.A., Balmes 22, Tel. 301 63 12 BARCELONA 7.

Sweden: ELCOMA A.B., Lidingoévagen 50, Tel. 08/67 97 80, S-10 250 STOCKHOLM 27.

Switzerland: Philips A.G., Elcoma Dept., Edenstrasse 20, Tel. 01/44 22 11, CH-8027 ZURICH.

Turkey: Tirk Philips Ticaret A.S., EMET Department, Gimussuyu Cad. 78-80, Tel. 45.32.50, Beyoglu, ISTANBUL.
United Kingdom: Mullard Ltd., Mullard House, Torrington Place, Tel. 01-580 6633, LONDON WC1E 7HD.

© N.V. Philips’ Gloeilampenfabrieken
This information is furnished for guidance, and with no guarantees as to its accuracy or completeness; its publication conveys no licence under any patent or other right, nor

does the publisher assume liability for any consequence of its use, specifications and availability of goods mentioned in it are subject to change without notice: it is not to be
reproduced in any way, in whole or in part, without the written consent of the publisher

Printad in Tha Netherlandc 2-76 9399 509 52161

PHILIPS

Electronic
components
and materials

PHILIPS

THE ABC ADAPTABLE

BOARD COMPUTER SP55

AN APPLICATION MEMO

0 H

THE ABC1500 ADAPTABLE BOARD COMPUTER

SP55

INTRODUCTION

System development cards are designed to
simplify the user’s task when doing micro-
processor evaluation prototyping. To
achieve this goal, the card should be de-
signed with enough flexibility to make it
adaptable to individual requirements. It
should contain a certain amount of RAM for
storage of programs under development. A
ROM or PROM or a combination of both
should be provided for permanent storage
of programs such as debug software. The
card should be designed for easy interfac-
ing to current loop or RS-232 terminal de-
vices. Buffers should be provided for ad-
dress, data and control lines to facilitate
expansion of memory and I/O logic. The use
of one or more general-purpose ports will
aid in I/O interfacing. In summary, the over-
all design philosophy should be to add
nothing to the card that is not a basic ne-
cessity. This philosophy maximizes cost
effectiveness and minimizes unused design
features.

This applications memo describes the vari-
ous components and applications of the
ABC (Adaptable Board Computer) 1500
system development card. Topics covered
include:

ABC1500 memory organization
Memory and 1I/O port decoding

/0 interface

Bus and control line buffers
Clocking requirements

Minimum ABC system configuration
Addition of 1K of RAM memory
Step mode operation

Synchronous and asynchronous operation
1/0 port interface design examples
Interrupt option

Kit considerations

Component identification list
ABC1500 edge connector signal list

THE ABC1500

The objective of the ABC1500 card is to
enable the user to develop 2650-based sys-
tems in a configuration that fits his particu-
lar needs. The card is designed around the
Signetics 2650 8-bit microprocessor. It con-
tains 1K bytes of ROM with the PIPBUG*
debug program, 512 bytes of RAM, 2
general-purpose parallel /0O ports, 1 serial
1/0 port, and buffers for the address, data,
and control lines.

Wire jumpers are included for selecting
from among several available memory and
I/0 port configurations, terminal interface
schemes, and operating modes. Additional
circuitry can be added to the card in the

“PIPBUG, a program debug module, is described in detail
in Signetics MOS Microprocessor Applications Memo
SS50.

2650 MICROPROCESSOR APPLICATIONS MEMO

wire-wrap area provided. Expansion of the
card is made possible by feeding all buf-
fered address, data and control lines into a
100-pin edge connector.

An assembly drawing and a logic diagram of
the ABC1500 are shown in Figures 1 and 2,
respectively.

If the current-loop interface is used, only a
single 5 volt supply is necessary to power
the entire card. When communicating with
RS-232 type terminal devices, a £12 volt
power supply is also required.

The ABC card is sold either as a completely
assembled and tested card (2650PC1500) or
in kit form (2650KT9500).

ABC1500 MEMORY
ORGANIZATION

To simplify memory decoding, a trade-off
was made between usable memory space
and the complexity of the decoder. By allo-
cating the entire 8K of page zero to the on-
card memory and limiting memory expan-
sion to 24K (adequate for the majority of
prototyping applications), considerable
simplification was realized. Only 2, 16-pin
ICs are required to perform both memory
selection and 1/O port decoding.

-

N ence limaa /AQ A4

~n o arA . “
nree audress INes (A9, ALL,

r and A12) are
not used to address the on-card memory.
The result is that the on-card ROM and RAM
appear to occupy the entire 8K page in an
interweaving pattern as shown in Table 1.
This prohibits external memory from using

any of the page zero memory space, and the

first allowable location for add-on memory
is 200044, or the beginning of page 1. All of
pages 1, 2 and 3 are available for memory
expansion.

ROM Configuration

The 1K bytes of ROM are implemented with
one 2608 NMOS static ROM (IC7) that con-
tains PIPBUG, a firmware aid used to enter
and debug user programs. Since the ROM
occupies the first 1K bytes of address space,
the 2650 will enter PIPBUG when the card is
reset. If the debug program is not required,
the ROM can be removed from its socket
and replaced with a user ROM or with two
825115 (512 x 8) PROMSs, for which board
space is provided (IC5 and IC6). However,
the ROM and PROMSs cannot be used to-
gether since they occupy the same address
space.

RAM Configuration

The 512 bytes of RAM are implemented with
four 2112-2 (256 x 4) NMOS static RAMs
(ICs 1, 2, 3, 4). They are located in the
memory address space from 40045 to 5FF g,
but also appear to occupy other address
spaces in page 0 as shown in Table I. Since
the second block of memory occupies the
“top” of page 0, the on-card RAM may be
used to store indirect addresses or subrou-
tines which can be accessed by the ZBRR
and ZBSR instructions with negative off-
sets.

Since PIPBUG resides in the first 1K of
memory, an interrupting device cannot use

DECIMAL l HEX
ADDRESS LINES ADDRESS ORGANIZATION ADDRESS
A14 | A13 | A12 | A11 | A10 | A9 8k \FEF 1FFF
SECOND BLOCK RAM
0 0 X X 1 FIRST BLOCK RAM
SECOND BLOCK RAM
7k FIRST BLOCK RAM 1BFF
0 0 X X 0 X PIPBUG ROM
6k SECOND BLOCK RAM 17FF
oo | x | x| 1] x SECOND BLOCK AAT
5k FIRST BLOCK RAM 13FF
0 0 X X 0 X PIPBUG ROM
4k SECOND BLOCK RAM OFFF
olo | x | x | 1] x EEOND BLOCK RAT
SE T
3k FIRST BLOCK RAM OBFF
PIPBUG ROM
0 0 X X 0 X O7FF
2k SECOND BLOCK RAM 06FF
N FIRST BLOCK SAM OSFF
S R O M N A B N o 04FF
O3FF
0 0 X X O X PIPBUG ROM
e "
NOTES: 1.* = Don't care for ROM and RAM; ** = Don't care for RAM. 2. Each block of RAM = 256 bytes.

Table 1

SilnOtiCS

MEMORY MAP

SP55

2650 MICROPROCESSOR APPLICATIONS MEMO

THE ABC1500 ADAPTABLE BOARD COMPUTER

ABC1500 LOGIC DIAGRAM

00000000000 0000000000000000000000000C0000C0000V000O000000COOOONVOCOTO0O00CO00CO

[3 L]
° ° ° ° ° ° ° ° ° ° ° o ° ° °
00600000000000
000
00¢
0080000000
00600

; ° ; o ° ° ©) °
0000000¢[000000000000000000C0[00C2000

00000 0COCITIDO000Q00C000

I

+

PPN
SEHER Y

M

PART
NO. © m

B 2650PC1500

Figure 1

Silnotics

SP55

THE ABC1500 ADAPTABLE BOARD COMPUTER

2650 MICROPROCESSOR APPLICATIONS MEMO

ABC1500 ASSEMBLY DRAWING

- LLVM b/L SHOLSISIE 1TY (8'V'Z'L) AND O 8-9
sosed T (X) NId HOLD3NNOD 3903 (X) O ::.o.H .3onuo<:m.H o [s30v1d01 9L-A
avd o . [ey T
Mcw\s (05 '4) 6+ O .“. T T 204 v Tzt
Zl9 veA (6v '2) zL- O - -9 @ TT D
! ' I-A
(™ Osoam— o] Vom T e 230 @y Bz o o v
1) OFea e Vay o 9 bt m (7)1 O o<
W) 07355 ——1] Lv8 W 4 |50~ -0—— %OVINI MR 3snvd e —O (£2) 3snvd
(6) 05230 ova M i1zm (¥) 3dM O—0 9LvL BH dum " “
W O=5d0 sva LS on 2002 <t my (81) duM - DIUIN o O (92) DIYLNI
5d0 vva 881518 € Ny (21) 0—3 Wy s 18 }
P 0-55%6 evg 1 (W) adm O—o @ < LS wos =
(9) O—S395—] eve %2012 ﬂn\wv}ozo MOVINI (91) O—3— MOVLNI = T—0 (1) NI ALL
IV @ o® D0 @ 22 ano T
240 L DRI DD @ A Lz -
®1Og5q0 L8 NS s NS A 2 Wy Ly o—— AIVM - N3EaV [20, =S i
ssnaa 2% (%) 24y O%OHM o e) nasngaft— Lo (n) -zezsy
9snga
ssnsa on o—o Tz M 03O (02) O——] 03440
¥snag M add Oy 2 qan §0Vd0 f=—0 O (22) %940
£sN8Q @ Oi/W
w‘umm 0051 00 pLuay
rolrofro | 2| |=t=—0sn8a feises . sLyav (A) +NI Z€2SH
SREEeERE wy —fos Holo—T snas |
o3udo —]18€g lm_g\m zLv (56) O—— ziyay
@ 00V O (d) a2 13swod -Fje8 oL = 8ELSYL L
LTISWVH €8 Lv[5 D380 o N
dO Aot 013swvd {v8 zvl gy o o= am LLY (€€) O—— Lyav
ad0 a) Iaw 3198 L (24 a Clpyes 20, YLENL -
O cado 1404 O/t N 131 2o £V oW 7 2% oLV (88) O—4— oLyav 0¥ A
" 05540 v] V8 Ligs-:g18 A 130 g8 vV (79 =
(H) £va vl 1 L 6V (L) 64av
(1) o£ad0 5] £ve w aan g dum £ e s ccezne~y LT | an o o 0 omiant
(33059409} Yo ssnpL, - avaey 8y 165) o—3—=<F—] suav o e
@0 cme m-l.la«m 88y T"le W [0380 v (ov 0—— ! Eaa s o M.w”
w<:30‘U|9 5 o1 8] 29IV 20, 20,
Z=1618
am sim 13534 —o< 0 13534 (52)
/. Ly sv (25 o—+—Eie swav n N 2838
L 13SWVY 9LvL
>PPPPRPRR>R .&630U|: o1} Pe9Y 8Ly oLy
ZZH5RERLE z1ot 2
£V (£9) O—3— £4av 20, A
zv (Lv) O—4— zyav uo>|~w.ww~|IO (S) +1NO ALL
LV (S¥) Lyav M @ H Ly (1) ~1N0 ALL
wodz-ziiz Wz 8-9 ov (v¥) O oL oyav ovl4 IAKQQ 9LvL 6 8
D m
g ® gg23| [© ggeog aL-p 928 s D Le618
89 9N ElelR BN JBEEE BEN (A) +100 z€ZSY
1
N)
+| £SN8A (L) Lsn8a Sx% s z1. @
5, 9snaa (ov) 9snsa 20,
5 3 0 2019 (€2)
-9 ZLA 7 0 SSN8 ssn8a
-O:
z B
||4v,...mH vSN8a (8) vsnga
(9Nadl @ 9z18 =
N T om
Iy (G kad = AU ssnaa (0 040 gsnga %019 ol
G 0z ZL V4 E — 8¢
| MNYD 0 z
I N = P 13SWoH |mN?o| zsnga (9) OIHI zsnea 4d oww
-0
S 3
ZERERREREE ||||~|Wow 1snga 05 01 %ot 05 01 %ot
o<} 1y Ziy
> = osnsa (v) losnaa aa,, op 3n
€ " s G| £2LYL
Iaw 29 (dAL Y0Z) HOIH 2010 SN 00S OL 007 IAID OL €14 123138
9zi8 A (dAL MOL) ZHW L JAID 0L ZLY 1237138

ONINIL

Figure 2

sifnotics

THE ABC1500 ADAPTABLE BOARD COMPUTER

SP55

the first 63 memory locations for indirect
address or interrupt routine locations. How-
ever, since RAM exists at the top of the 8K
page, the interrupting device can provide
vector addresses in the negative direction
from address ‘0’. A negative vector from
address location ‘0’ wraps around to the top
of the page.

Optional Memory

Configurations

Optional operation using 825129 PROMs or
825229 ROMs in place of the 2112-2 RAMs
is possible. This modification requires a
jumper change for each 256-byte block of
memory to exchange the R/W line on the
RAM for the pin equivalent chip enable line
on the PROM/ROM. The first block of mem-
ory (400, - 4FFs) requires that jumper
W,,-W,; be replaced with jumper W,,-W3.
The second block of memory (50046-5FF¢)
requires that jumper W,5-W,4 be replaced
with jumper W;4-Wye.

Table Il is a representative sample of the
memory configurations that are possible
with the ABC card. Other combinations of
RAM/PROM/ROM are possible. When
working with PIPBUG, the first block of
the first 63 bytes of RAM for temporary
storage.

2650 MICROPROCESSOR APPLICATIONS MEMO

DMA Transfers

The ability to transfer data into memory with
a DMA transfer has been sacrificed in the
interest of card simplicity. DMA transfers
with external add-on 'memories, however,
can be performed by stopping the 2650 via
the ‘PAUSE’ line. If the PAUSE input is
brought to ground, the 2650 will finish the
current instruction, and then the RUN-
/WAIT output of the 2650 will go low, caus-
ing all external memory address, data, and
control lines to be tri-stated, except for
OPREQ.

The user can then externally drive all of the
memory control lines except OPREQ. This
line is not tri-stated, since it is used to
disable the decoding PROM (IC23) when
the 2650 is in the WAIT state.

ABC MEMORY AND

1/0 PORT DECODING

Two 16-pin ICs are used to perform memory
and I/0 port decoding. The firstis a74S138,
3-to-8 line decoder with enable inputs. It
performs decoding for port C selection, port
D selection, and on-card memory decoding.
Table iii shows the logical reiationship be-
tween the 6 input signals and the 3 output
signals.

The second decoder is an 825123, 32 x 8
PROM used as a logic element. Its outputs
are programmed functions of the inputs.
The DE1 and RE1 lines control the 8T26
driver/receivers between the 2650 and the
external data bus. Signal MDE controls the
8T26s between the internal memory bus and
the external data bus. The RAMSELO, RAM-
SEL1, and ROMSEL outputs are chip se-
lects for_the RAM and ROM memories.
Signal R/W1 performs read/write control of
the on-board RAM memory. Table IV is the
truth table for the PROM, while Table V
represents the logical relationship between
the 5 input signals and the 8 output signals.

1/0 INTERFACE

I/0 interface for the ABC1500 card consists
of 1 serial port and 2 parallel 8-bit ports. The
serial port provides a communication path
for current loop (20mA) and RS-232 inter-
faces. The two 8-bit ports may be used for
general-purpose 1/0 interfacing over the C
and D buses.

Serial Port

Communication with the terminal device is
performed serially using the ‘SENSE’ and
‘FLAG’ lines on the 2650. Both current loop
and RS-232 transmission modes are possi-
ble, each being selected with a pair of wire
jumpers, as shown in Table VI. A +12 volt

MEMORY ADDRESS
CONFIGURATION MEMORY RANGE* COMMENTS
(BYTES) TYPES (HEX)
1K ROM (PIPBUG) 1-2608 0-3FF Standard configuration
512 RAM 4-2112-2 400-5FF
1K PROM 2-825115 0-3FF Remove PIPBUG ROM from socket and insert
512 RAM 4-2112-2 400-5FF PROMs in holes provided (IC5, 6).
1K ROM (PIPBUG) 1-2608 0-3FF PIPBUG requires 63 bytes of RAM storage.
256 RAM 2-2112-2 400-4FF Remove jumper W15-W16. Add jumper
256 PROM 2-82S129 500-5FF W14-W16.
1K ROM 1-2608 0-3FF Remove jumpers W15-16 and W12-W13.
512 PROM 4-82S129 400-5FF Add jumpers W14-W16 and W11-W13.
1K PROM 2-825115 0-3FF Remove PIPBUG RQOM from socket and insert
512 ROM 4-82S229 400-5FF PROMs in holes provided (IC 5, 6).
Remove jumpers W15-W16 and W12-W13.
Add jumpers W14-W16 and W11-W13.

*Because of don't care address bits, these memory blocks will appear several times in the first 8K page (see Table I).

Table 2 SAMPLE ABC1500 MEMORY CONFIGURATIONS

OUTPUT PIN EQUATION FUNCTION

MEC 15 MEC = OPREQ ® E/NE WRP o TS e D/C ® M/IO Select non-extended Port C
MED 13 MED = OPREQ ¢ E/NE ® WRP e TS @ D/C & M/IO Select non-extended Port D
MEMSEL 11 MEMSEL = OPREQ ® A13 « WRP & TS & A14 e M/IO Select on card memory

Table 3 ONE-OF-EIGHT DECODER OUTPUT LOGIC EQUATIONS

sifnotics

THE ABC1500 ADAPTABLE BOARD COMPUTER

SP55

power supply is required for the RS-232
mode. The ‘SENSE’ input is driven by a
discrete “current loop” receiver (Q1) or an
RS-232 compatible inverter input (IC17, pin
5). The ‘FLAG’ output is connected to the
RS-232 compatible 8T15 driver (IC12, pin 1)
or the “current loop” driver (IC17, pin 9).
Tables VIl and VIIl show the interconnec-
tions between the ABC1500 and current
loop or RS-232 compatible terminals.

2650 MICROPROCESSOR APPLICATIONS MEMO

Parallel Ports

Two non-extended I/O channels are imple-
mented on the ABC1500 with 8T31 8-bit,
bidirectional latched ports (1C21-Port C,
1C20-Port D). The 2650 transfers datato and
from each port using single-byte, non-
extended 1I/O instructions. Three control
and 2 status lines for each port permit the
establishment of a handshaking routine to

INPUTS OUTPUTS
ADDR. | MEM I RAM | RAM |ROM _

SEL |A10| A8 |OPREQ| R/W|RE1|DE1|MDE |SELO|SEL1 | SEL | OPREQ|R/W1

A4 (A3 |A2] A1 (a0 76| 5|4 [3 |2 1 0
0 o|lolo|l o |o|1]ofl o] 1] 1 1 1
1 o |lolo|l o |1 l1lol o] 1|1 1 1 0
2 o lolol 1 ololol 1l 1l 1 1o 0 1
3 o |o|o]| 1 I IR TN IR I T I 1 0 0
4 o | o1 o ol 1]lo|l o 1] 1 1 1 1
5 o lol1] o 111 lol o] 1] 1 1 0
6 0- ol1 1 ololo| 1] 1] 1]o 0 1
7 0o |o]1 1 I T T A I T 1 0 0
8 o |1]0] 0 ol 1o o] 1 1 1 1 1
9 ol1]lo0] o 1t l1]of o1 1 1 1 0
10 0 1 0 1 0 0 0 1 0 1 1 0 1
11 0 1 0 1 1 1 1 0 0 1 1 0 0
12 ol1]1] o |o|1|0] o] 1 1 1 1 1
13 ol1]1] o 11110 o 1 1 1 1 0
14 o |1 |1 1 ololo| 1|1 |0 |1 0 1
15 o |11 1 111l ol 1o |1 0 0
16 1 lolol o |ol1]o] o] 1] 1 1 1
17 1 0 0 0 1 1 0 0 1 1 1 1 1
18 1 lolol| 1 olojo| o] 1] 1 1 0 1
19 1]olo| 1 1l 1o 1] 1 0 1
20 1 lol1| o ol 1]o}o] 1|1 1 1 1
21 1 0 1 0 1 1 0 0 1 1 1 1 1
22 1101 1 ololo| o | 1|1 1 0 1
23 1 1o |1 1 O BT T T T R I 0 1
24 1 1 0 0 0 1 0 0 1 1 1 1 1
25 1 1]o]| o 11 oo | 1|1 1 1 1
26 1 1 0 1 0 6] 0 0 1 1 1 0 1
27 1 1o 1 1l lo] 1] 1 0 1
28 1 1 1 0 0 1 0 0 1 1 1 1 1
29 1 1 1 9] 1 1 0 0 1 1 1 1 1
30 1 1 1 1 0 0 0 0 1 1 1 0 1
31 1 1 1 1 1 1 1 0 1 1 1 0 1

Table 4 CONTROL PROM TRUTH TABLE (825129)

efficiently control data transfers between
the user’s device and these I/0 ports. Since
each port inverts the data from one side to
the other and the data bus drivers/receivers
are also of the inverting type, data on the C
and D buses will have the same polarity as
the data internal to the 2650.

Port Control Lines

Table IX lists the 3 port control lines and the
operation performed by each. These lines
are routed to the edge connector for exter-
nal interface. If no external logic is connect-
ed, each port will be in the READ mode (C
and D buses reflecting latched data in each
port), since the WBAC and WBAD lines are
pulled up to +5 volts with 10K resistors on
the card. A low condition on either line will
write data from the C or D bus into the
appropriate port.

NOTE: Care must be exercised when writ-
ing to the ports. An external device will
override the 2650 when “WRITE" conflicts
occur.

As shown in Table IX, the RBAC and RBAD
lines serve only to put the buses into the
TRI-STATE mode. If the third state is not
necessary, lines RBAC and RBAD can be
tied to ground to allow read/write control
with just 1 line on each port. The ABC1500
card includes provisions for ground con-
nection, with jumper W19-W20 for RBAC
and jumper W17-W18 for RBAD. The as-
sembled card is shipped with these jumpers
in place.

Each port has a clock line that controls
writing to that port. Both clocks (CKC for
port C and CKD for port D) are pulled up to
+5 volts on the card with 10K resistors.
Therefore, no external connection is re-
quired if the ports are to be always enabled.
A low on a clock line will inhibit that port
from receiving any data from either the 2650
or the external device.

Port Status Lines

During 2650 activity with the ports, the
ABC1500 provides 4 output strobes indicat-
ing the nature of the operation. These “user-
convenience” strobes are described in
Table X. Each strobe is generated from a
7402, 2-input NOR gate. Examples of how
these strobes may be used in practical ap-
plications are included later in this applica-
tions memo.

THE ABC1500 ADAPTABLE BOARD COMPUTER SP55

2650 MICROPROCESSOR APPLICATIONS MEMO

OUTPUT PIN EQUATION FUNCTION

DE1 9 DE1 = OPREQ ¢ R/W Enables 2650 data bus drivers

RE1 7 RE1 = OPREQ & R/W Enables 2650 data bus receivers
MDE 6 MDE = OPREQ ¢ MEMSEL e ﬁ/—w Select ABC1500 RAM, first block
RAMSELO 5 RAMSELO = OPREQ ® MEMSEL ¢ A10 A8 Causes ABC1500 memory to drive data bus
RAMSEL1 4 RAMSEL1 = OPREQ ® MEMSEL o A10 o A8 Select ABC1500 RAM, second block
ROMSEL 3 ROMSEL = OPREQ ® MEMSEL e A10 Select ABC1500 ROM

OPREQ 2 OPREQ = OPREQ Invert OPREQ

R/W1 1 R/W1 = MEMSEL e R/W Read/write control for on-card RAM

Table 5 PROGRAMMED OUTPUT LOGIC EQUATIONS FOR THE 82S123 PROM

MODE OF

TRANSMISSION JUMPERS POWER SUPPLY

20 Milliamp W6 - W7 No Additional

Current Loop W4 - W5 Supply Required

RS-232 W7 - W8

Compatible W3 - W4 12 Volt Supply

Table 6 SERIAL TRANSMISSION MODES
RS-232 STANDARD ABC1500
PIN NUMBER PIN NUMBER DESCRIPTION

1 N.C. Protective Ground
2 Y Transmitted Data (RS-232 IN+)
3 Vv Received Data (RS-232 OUT+)
5 N.C. Clear to send
6 N.C. Data Ready
7 U Signal Ground (RS-232 -)
8 N.C. Received Line Signal Detector
20 N.C. Data Terminal Ready

Table 7 RS-232C STANDARD CONNECTION
NOTE: N.C. = No Connection

The signals on pins 5, 6, 8, and 20 are used between data terminals and communication modems. Since
the ABC1500 does not provide these “handshaking” lines, they should be tied together on the
connector. In this way, the “Data Terminal Ready” line drives the other three lines to the proper state.
Not all terminals, however, require this connection.

TELETYPE ABC1500
PIN NUMBER PIN NUMBER DESCRIPTION
6 T Receiver - (TTY Serial OUT-)
7 S Receiver + (TTY Serial OUT+)
3 R Transmitter - (TTY Serial IN-)
4 P Transmitter + (TTY Serial IN+)

Table 8 CURRENT LOOP CONNECTION
NOTE:

The teletype is normally a 20mA current loop type of receiver and a contact closure type of transmitter.
The PIPBUG Debug program communicates with the teletype in a full-duplex mode, echoing charac-
ters as they are received. :

8 Sifnotics

THE ABC1500 ADAPTABLE BOARD COMPUTER

SP35

2650 MICROPROCESSOR APPLICATIONS MEMO

PORT C CONTROL LINE TRUTH TABLE

WBAC | RBAC | CKC DESCRIPTION
1 0 X External device reading port C
0 0 1 External device writing to port C
1 1 X Tri-state C bus
X X 0 Inhibit writing to port C from either external device or 2650

PORT D CONTROL LINE TRUTH TABLE

WBAD | RBAD | CKD DESCRIPTION
1 0 X External device reading port D
0 0 1 External device writing to port D
1 1 X Tri-state D bus
X X 0 Inhibit writing to port D from either external device or 2650

Table 9 PORT CONTROL LINES

ABC GENERATED
STATUS STROBE

DESCRIPTION

WPC

WPD

RPC

RPD

Positive true pulse, high for the duration of WRP, indicating
that the 2650 is placing data into port C. ‘

Positive true pulse, high for the duration of WRP, indicating
that the 2650 is placing data into port D.

Positive true pulse, high for the duration of OPREQ,
indicating that the 2650 is reading port C.

Positive true pulse, high for the duration of OPREQ,
indicating that the 2650 is reading port D.

interface and uses the clock as a timing
base. The stability requirements of the clock
are not critical, and the one-shot configura-
tion is adequate. For KT9500 assembly, it
may be necessary to select frequency resis-
tor R12 to insure the 1MHz operation and
the sampling of each bit at its approximate
midpoint. R12 is typically 7.5K. In nrost
cases pulse width resistor R13 will be fixed
at 20K to obtain a clock high time between
400 and 500ns.

An external clock may be used in place of
the one-shot configuration. When using an*
external clock, jumper W9-W10 must be
removed, and the external clock can then be
applied to pin 23 on the edge connector.

A MINIMUM ABC1500 SYSTEM
CONFIGURATION

In Figure 3, the ABC1500 card is interfaced
with 3 other components to configure a
basic prototyping system.

The reset switch is used to reset the 2650's
Instruction Address Register (IAR) to zero
and to enter the PIPBUG program. This
negative true input is inverted by IC17 to
obtain the positive true polarity required by
the 2650.

Table 10 ABC GENERATED CONVENIENCE STROBES

BUS AND CONTROL

LINE BUFFERS

The 2650 data bus is buffered with two 8726
tri-state inverting driver/receivers with a
40mA current sink capability (1C9, 14). Log-
ic on the card consumes approximately
1mA, leaving a net external drive capability
of 39mA. When the 2650 is not transferring
data over the bus, these buffersare in the tri-
state mode. The. output of the buffers
(DBUSO0-DBUS?) is routed 10 the edge con-
nector (pins 4-11).

The on-board memory bus is buffered from
the external data bus with two 8T26s (IC8,
13). These buffers are never in the tri-state
mode. When not actively transferring data,
these devices are reading the external data
bus to the internal memory bus. Double
buffering between the memory and 2650
allows data polarity to be preserved.

The 2650 address bus and control lines are
buffered with four 8T97 hex tri-state buffers
(1C10, 11, 16, 18). The state of the TS control
line (IC17, pin 12) determines whether the
drivers are in the tri-state mode or actively
driving the external lines. When the 2650 is
in the RUN mode, the TS line is low, en-
abling the 8T97s to be in the active state.
When the 2650 is in th:2 WAIT mode, the TS

line is high, and the address bus drivers are
in the high-impedance state. External con-
trol of the TS line can change the address
bus drivers to the active mode when the
2650 is in the WAIT state, but cannot force
the drivers to the high-impedance state
when the 2650 is “running.”

The external drive capability of the address
bus is essentially the same as the drive
capability of the 8T97 (48mA sink capabili-
ty). The control lines will be loaded slightly
by logic on the card. The maximum load is
on the A13E/NE and A14eD/C lines. Card
logic will consume 2mA of the 48mA capa-
bility.

ABC1500 CLOCKING
REQUIREMENTS

The clock on the ABC1500 card is imple-
mented with a 74123 (1C19) dual mono-
stable multivibrator. One half of the 74123 is

connected in an astable mode to determine -

the frequency of the clock. The other half is
connected as a one-shot to set the pulse
width.

When running under PIPBUG, the 2650
requires a 1MHz clock for serial communi-
cation with the TTY. The PIPBUG program
performs all formatting for the 110 baud

sifnotics

BASIC PROTOTYPING SYSTEM

25
ABC RESET
14 swiTcH

P
R

TTY

S

[T
+5 VOLT
SUPPLY

Figure 3

ADDITION OF 1K OF RAM MEM-
ORY TO THE ABC1500 CARD

It is possible to expand the memory of the
ABC1500 card by using the wire-wrap area.
In the example shown in Figure 4,12 ICs are
used to add 1K of RAM memory.

The memory occupies the last 1K section of
page 3 and uses a single N7430 gate to
decode the appropriate signals. These sig-
nals can be obtained from wire wrap pins_
inserted into the appropriate holes on the

AorA
<araG.

The 8T26 buffers are used to multiplex the
single input and output from each memory
(1K x 1) onto the external data bus. When

9

THE ABC1500 ADAPTABLE BOARD COMPUTER SP55

2650 MICROPROCESSOR APPLICATIONS MEMO

1K MEMORY CONFIGURATION
A0-A9
\ \ \ / Y / /
AO—A9 AO-A9 A0—A3 A0—A9 AO—A9 A0—A9 AO—A9 AO-A9
R/W R/W R/IW R/W R/W R/W R/W R/W
CE CE CE CE CE CE CE CE
21L02-1 21L02-1 21L02-1 21L02-1 21L02-1 21L02-1 21L02-1 21L02-1
Doyt Din DouT Din Doyt _Din Doyt Din Doyt DiN Doyt Din Doyt DIn Doyt DiNn
< 7 25 8726 8726
R/E D/E D/E R/E
DBUSO DBUST DBUS2 DBUS3 DBUSA DBUSS DBUSE DBUS?
7402
OPREQ W
M/i0
WRP
R/IW Al4
A13
A12 7430 7402
AN |
A10
Figure 4
SINGLE-STEP LOGIC SINGLE-STEP LOGIC
ONE INSTRUCTION AT A TIME ONE CLOCK PERIOD AT A TIME
STEP
7476 7476
7404
J Q —1J ar
7404
(W9)CK Of CK —Of CK
PAUSE @ a
+5 J_D Q (29)35 — K ¢ Q K ¢ Q
CK
7404 _ 7404 ? ?
a —-Do—— [
RUN/ R 7400
= STEP = 7404
RUN/WAIT. 7400
(19) +5—AMV-
' RUN/STEP crocx
= DOWN FOR STEP MODE ,.()_re] (PIN 23 OR W10)
-TL DOWN FOR 7400
STEP MODE
Figure 5 Figure 6

not communicating with the memory, the
buffers are reading the external data bus.

STEP MODE OPERATION

The ability to cycle through a program one
step at a time is very useful when checking
out software. The 2650 microprocessor is
ideally suited for this type of operation
because of its static design. An example of
the logic necessary to putthe ABC1500 card
into the step mode for single-instruction
execution is shown in Figure 5.

10

To enter the step mode, the RUN/STEP
switch is depressed. This enables the tri-
state driver tied to the pause input on the
card (pin 27), and immediately causes the
PAUSE line of the 2650 to go true or low,
since the Q output of the D flip-flop is low for
the RUN mode. De-bounce logic is not
necessary, since the 2650 will eventually
recognize the low condition on the PAUSE
line after executing any number of RUN
/WAIT cycles.

When the 2650 enters the WAIT state, the
RUN/WAIT line (pin 19) goes low, allowing

SilNOLiCS

the flip-flop to be clocked to the SET state
(Q goes high) when the momentary contact
STEP switch is depressed. With the Q out-
put of the flip-flop high, the PAUSE line will
go high taking the 2650 out of the WAIT
state. When the 2650 enters the RUN mode,
the flip-flop will be reset, and the PAUSE
line will again go true, forcing the 2650 into
the WAIT state after completing one in-
struction. This procedure is repeated for
each depression of the switch.

It is also possible to step through a program
1 clock period at a time. This procedure is

THE ABC1500 ADAPTABLE BOARD COMPUTER SP55

2650 MICROPROCESSOR APPLICATIONS MEMO

useful for observing the status of the bus

and control lines during each instruction ADDRESS AND DATA BUS DISPLAY
cycle. In this case, instead of pausing the
2650, the clock is controlled with the logic +5

shown in Figure 6.

To work in this mode, the clock jumper W9-
W10 is removed and a wire is connected

from W9 to the clock input on the first J-K ABC ‘S LED(1 OF 8)

flip-flop in Figure 6, and to one of the inputs PORT | B8 0PDO_OPD7
on the 2-input NAND gate. When in the RUN ° 7 7404

mode, the RUN/STEP switch is up, enabling WEAD 5

this NAND gate to control the ORing NAND

gate. The ORing NAND gate is fed to the

clock pin on the ABC card or to W10. This OPREQ

completes a path between the output of the 5BUSO_DEUST ,,8 5LED (1 0F 16)
one-shot on the card and the clock input on 16

the 2650. AO-AT5 [—F

To enter the step mode, the RUN/STEP

switch is depressed. This blocks the clock Figure 7

between W9 and W10. The JK configuration
then synchronizes the asynchronous step
input with the clock to produce a pulse 1
clock period wide for each depression of the ASYNCHRONOUS OPERATION USING OPACK
momentary contact STEP switch. This al-
lows 1 clock pulse to be provided to the 2650

for executing instructions 1 clock period at +5 +5

a time.

One approach that can be used for display- 7405 7405 ABC
ing the data and address bus during the AT N~ N~ BPACE
single clock period modeisseenin Figure7. | 2 =0 o
Here the address bus is displayed with an OFACKZ

LED and current limiting resistor added to
each line. External latches are not required GOPACK 3
since the 2650 holds the current address
state when the clock is low.

Figure 8
To display the data bus will require that the

bus be latched, since the bus will be tri-
stated when OPREQ is low. One of the ports
(Port D in Figure 7) can be used for data
storage if that port is not needed by the
software. Here the external data bus
(DBUSO0-DBUSY?) is connected to the port ——
bus with LEDs and current limiting resistors r—l\%%é— 8 cBUS L4
on each line. The port READ/WRITE line is DATAL™7 7 D
controlled by the OPREQ line through an WBAC —o— CK
external inverter. When OPREQ is high, the 7408 7475
port is being written into from the data bus.

When OPREQ is low, the data is latched in
the port which is now in the READ mode.

1/0 LOGIC TO PORT C

4—BIT LATCH

7475

RPC p—O— 44

SYNCHRONOUS/ASYNCHRO- wee cK
NOUS OPERATION 4s
The operation acknowledge (OPACK) input 8197 TR STATE BUEFER 4-BIT LATCH
to the 2650 indicates completion of an exter-

nal operation. This allows for asynchronous
control of external devices. The assembled DATA SWITCH
card is configured to work synchronously, 1

with OPACK grounded by jumper W2-W1.

This requires input data to be returned to
the processor in 850ns or less atacycle time
of 2.4us. If this timing constraint is too Figure 9
severe, asynchronous operation can be en-

Sinotics 11

THE ABC1500 ADAPTABLE BOARD COMPUTER

SP55

abled by removing the jumper and driving
the OPACK line (pin 22).

Figure 8 is a possible configuration for
connecting 3 slow devices to the ABC1500
card.

This scheme hdlds OPACK low (true) untila
slow external device is selected, at which
time the device drives its respective OPACK
line high for the required time. When the
device is finished with the operation, it
lowers OPACK until it is selected again.
When transfers to on-card memory or ports
are executed, the OPACK line is held low
(true) for synchronous data transfers.

I/0 PORT INTERFACE
DESIGN EXAMPLES

“‘Handshaking” signals are provided to sim-
plify communication between the ports and
the user’s device. Several examples are
presented to illustrate possible interface
techniques for connecting the 2 ports to
external devices.

Example 1—Port C
Input/Output Configuration
In this example, port C is accepting data

from 8 switchesg and nregenting data to two
oM & SWITCNES and presentng Gaia 0 itwo

4-bit latches. The 2 “handshaking” signals,
RPC and WPC, are used in the configuration
shown in Figure 9.

The 8 switches are tied to the C bus through
tri-state buffers. Input write control line
WBAC is controlled by an inverter with its
input tied to RPC. When the 2650 performs a

2650 MICROPROCESSOR APPLICATIONS MEMO

read from port C (REDC), line RPC goes
true forcing WBAC low and allowing port C
to store data from the C bus. The output of
the inverter also controls the tri-state enable
of the buffers, turning on the buffers when
RPC goes true.

When writing to port C from the 2650, WPC
will go true, clocking the data on the C bus
into the two 4-bit latches.

Example 2—Synchronizing Data
Entry From 2 External Devices
When inputting data from 2 external de-
vices, an interleaving transfer scheme can
prevent synchronization conflicts between
the devices and the 2650. The configuration
is shown in Figure 10.

External device 1 places data onto the Cbus
and clocks it into port C when the 2650 is
reading port D. Likewise, external device 2
places data onto the D bus and clocks itinto
port D when the 2650 is reading port C, thus
preventing conflicts between 2650 activity
and loading of the ports from the external
devices. Note that alternate read C and read
D cycles are required to read the proper
data, and that the first read cycle executed
will not have valid data associated with it.

Example 3—Synchronizing Data
Transfer Between the 2650 and an
External Device

The technique illustrated in Figure 11 may
be used when transferring data asynchro-
nously between the 2650 and an external
device.

In this example, a D latch is used to syn-
chronize data transfers from the 2650 to an
external device. When the 2650 loads port C,
handshake signal WPC goes true, clocking
the D latch to the SET state. The Q output of
the latch is tied to the ‘SENSE’ input (pin Y
with jumper W3-W4 in). The 2650 can be
programmed to monitor the ‘SENSE’ line.
For the ‘SENSE’ line HIGH, the program will
loop in a WAIT state. When the device has
accepted the data, it will reset the latch and
force the ‘SENSE’ line to zero. The 2650 can
then place new data in the port.

INTERRUPT OPTION

When responding to an interrupt, the 2650
obtains the interrupt vector by reading the
data lines when INTACK is issued. The state
of the control lines is such that a read of port
C would also be performed (ADR13eE/NE
and ADR14eD/C are both.low). To preventa
conflict between the interrupting device and
port C on the card, the INTACK signal is fed
to port C to disable the port during inter-
rupts. For certain applications, however, it
may be desirable to use port C to input the
vector address. This optional operation may
be obtained by replacing the W21-W22
jumper with a jumper-between W22-W23.

KIT CONSTRUCTION

Kit construction is straightforward requir-
ing only wire, wire cutters, and a soldering
iron. Each component has a number which
is stamped on the PC card in white. The
component number also identifies the loca-
tion of pin 1 for an IC. The component
identification list identifies each number

SYNCHRONOUS DATA ENTRY FROM PORT C OUTPUT SYNCHRONIZATION LOGIC
2 EXTERNAL DEVICES
ABC
ABC 7404 poRTic, | S ceus EXTERNAL
DEVICE
e e e)
PORT C
RPC 7474
$§ cBus *
DATA |~ —{o Q
7404 wec cK
J— ENABLE | ExTERNAL 5
WBAD a
o ‘_04 DEVICE 2 c
RPD
DATA ,18 DBus ; (DATA TAKEN)
SENSE
Figure 10 Figure 11

12

Sijnotics

THE ABC1500 ADAPTABLE BOARD COMPUTER SP55

2650 MICROPROCESSOR APPLICATIONS MEMO

with the appropriate component. Sockets holes. Reference should be made to Section values to obtain 1MHz operation. Also, if it is
are provided for the 2650 and for the 2608 7 for resistor values for the one-shot clock desirable to change the relative position of
PIPBUG ROM. If the user expectstousethe configuration. The kitis shipped withvalues the RAM and ROM in page zero, the 825129
RAM/PROM/PROM option (see Section 3), of 7.5K for R12 and 20K for R13, but it may control PROM can be re-programmed at the
he may want to insert sockets in the RAM be necessary to increase or decrease these user’s discretion.

ABC 1500 EDGE CONNECTOR SIGNAL LIST

PIN # FUNCTION PIN # FUNCTION
1 GND A GND
2 GND B GND
3 NC* C NC*
4 DBUSO D OPD 0
5 DBUS1 E OPD 1
6 DBUS2 F OPD 2
7 DBUS3 H OPD 3
8 DBUS4 J OPD 4
9 DBUSS K OPD 5
10 DBUS6 L OPD 6
11 DBUS7 M OPD 7
12 NC* N NC*
13 A14—D/C P TTY SERIAL IN +
14 NC* . R TTY SERIAL IN -
15 A13—E/NE S TTY SERIAL OUT +
16 INTACK T TTY SERIAL OUT -
17 R/W U RS232 GROUND
18 WRP \% RS232 OUTPUT
19 RUN/WAIT W NC*
20 OPREQ X NC*
21 M/10 Y RS232 INPUT
22 OPACK Z NC*
23 CLOCK a OPC 0
24 TS b OPC 1
25 RESET c QPC 2
26 INTREQ d OPC 3
27 PAUSE e OPC 4
28 NC* f OPC 5
29 RBAD g OPC 6
30 NC* h OPC 7
34 RBAS i NC
32 NC* k RPD
33 All m WBAD
34 A13—E/NE n WPD
35 A2 p CKD
36 A14—D/C r NC*
37 A9 s NC*
38 A10 t NC*
39 A8 u NC*
40 A7 v RPC
41 A6 w WBAC
42 A5 X WPC
43 A3 y CKC
44 A0 z NC*
45 A1 a NC*
46 A4 b NC*
47 A2 c NC*
48 +12V d +12V
49 -12Vv e -12Vv
50 +5V f +5V

*NC = No Connection

Sifnotics 13

THE ABC1500 ADAPTABLE BOARD COMPUTER

SP55

2650 MICROPROCESSOR APPLICATIONS MEMO

ABC 1500 COMPONENT IDENTIFICATION LIST

COMPONENT* DESCRIPTION**

R1, R2, R3 10K Resistor

R4, R5 1K Resistor

R6 2K Resistor

R7 3.3K Resistor

R8, R9 1K Resistor

R10 10K Resistor

R11 220-ohm Resistor

R12 7.5K (typical) Resistor

R13 20K (typical) Resistor

R14 1K Resistor

R15 10K Resistor

R16 2K Resistor

R17, R18 1K Resistor

R19, R20 10K Resistor

c1 300PF Capacitor

C2 50PF Capacitor

C3, C4, C5 4.7uf Capacitor, Tan. 50 DC
C6-C15, C17, C18 0.1uf Capacitor, Ceramic
C16 1.5uf Capacitor, Tan. 20 DC
D1, D2, D3, D4 1N914 Diode

Q1 2N2222 Transistor

1,2,3,4 2112-2 RAM

5,6 825115 PROM (optional)

7 2608 ROM (socket)

8,9 8T26 Tri-State Driver/Receiver
10,11 8T97 Tri-State Driver

12 8T15 RS232 Driver

13,14 8726

15 2650 Microprocessor (socket)
16 8T97

17 N7416 Hex Inverter Buffer

18 8T97 ’

19 N74123 Monostable Multivibrator
20,21 8T31 I/0O Port

22 N7402 Quad 2-Input NOR

23 825123 PROM

24 N74S138 3- to 8-line Decoder

** All resistors 1/, watt.

* All IC component numbers are located on card at pin 1 of IC.

Signetics 2650 Microprocessor application memos currently available:

AS50
AS51

AS52
AS53
AS54
SP50
SP51

SP52
SP53
SP54
SP55
S§S50
SS51

MP51
MP52
MP53
MP54

Serial Input/Output

Bit and Byte Testing Procedures

General Delay Routines

Binary Arithmetic Routines

Conversion Routines

2650 Evaluation Printed Circuit Board Level System (PC1001)
2650 Demo Systems

Support Software for use with NCSS Timesharing System
Simulator, Version 1.2

Support Software for use with the General Electric Mark |1l Timesharing System
The ABC1500 Adaptable Board Computer

PIPBUG

Absolute Object Format (Revision 1)

2650 Initialization

Low Cost Clock Generator Circuits

Address and Data Bus Interfacing Techniques

2650 Input/Output Structures and Interfaces

14

Silnotics

from the world-wide Philips Group of Companies

Argentina: FAPESA L.y.C., Av. Crovara 2550, Tablada, Prov. de BUENOS AIRES, Tel. 652-7438/7478.
Australia: PHILIPS INDUSTRIES HOLDINGS LTD., Elcoma Division, 67 Mars Road, LANE COVE, 2066, N.S.W., Tel. 42 1261.
Austria: OSTERREICHISCHE PHILIPS BAUELEMENTE Industrie G.m.b.H., Triester Str. 64, A-1101 WIEN, Tel. 62 91 11.
Belgium: M.B.L.E., 80, rue des Deux Gares, B-1070 BRUXELLES, Tel 523 00 00.
Brazil: IBRAPE, Caixa Postal 7383, Av. Paulista 2073-S/Loja, SAO PAULO, SP, Tel. 287-7144.
Canada: PHILIPS ELECTRONICS LTD., Electron Devices Div., 601 Milner Ave., SCARBOROUGH, Ontario, M1B 1M8, Tel. 292-5161.
Chile: PHILIPS CHILENA S.A., Av. Santa Maria 0760, SANTIAGO, Tel. 39-4001.
Colombia: SADAPE S.A., P.O. Box 9805, Calle 13, No. 51 + 39, BOGOTA D.E. 1., Tel. 600 600.
Denmark: MINIWATT A/S, Emdrupvej 115A, DK-2400 KOBENHAVN NV., Tel. (01) 69 16 22.
Finland: OY PHILIPS AB, Elcoma Division, Kaivokatu 8, SF-00100 HELSINKI 10, Tel. 1 72 71.
France: R.T.C. LARADIOTECHNIQUE-COMPELEC, 130 Avenue Ledru Rollin, F-75540 PARIS 11, Tel. 355-44-99.
Germany: VALVO, UB Bauelemente der Philips G.m.b.H., Valvo Haus, Burchardstrasse 19, D-2 HAMBURG 1, Tel. (040) 3296-1.
Greece: PHILIPS S.A. HELLENIQUE, Elcoma Division, 52, Av. Syngrou, ATHENS, Tel. 915 311.
Hong Kong: PHILIPS HONG KONG LTD., Comp. Dept., Philips Ind. Bldg., Kung Yip St., K.C.T.L. 289, KWAI CHUNG, N.T. Tel. 12-24 51 21.
India: PHILIPS INDIA LTD., Elcoma Div., Band Box House, 254-D, Dr. Annie Besant Rd., Prabhadevi, BOMBAY-25-DD, Tel. 457 311-5.
Indonesia: P.T. PHILIPS-RALIN ELECTRONICS, Elcoma Division, ‘Timah’ Building, JI. Jen. Gatot Subroto, JAKARTA, Tel. 44 163.
Ireland: PHILIPS ELECTRICAL (IRELAND) LTD., Newstead, Clonskeagh, DUBLIN 14, Tel. 69 33 55.
Italy: PHILIPS S.P.A_, Sezione Elcoma, Piazza IV Novembre 3, I-20124 MILANO, Tel. 2-6994.
Japan: NIHON PHILIPS CORP., Shuwa Shinagawa Bldg., 26-33 Takanawa 3-chome, Minato-ku, TOKYO (108), Tel. 448-5611.
(IC Products) SIGNETICS JAPAN, LTD., TOKYO, Tel. (03) 230-1521.
Korea: PHILIPS ELECTRONICS (KOREA) LTD., Philips House, 260-199 Itaewon-dong, Yongsan-ku, C.P.O. Box 3680, SEOUL, Tel. 44-4202.
Mexico: ELECTRONICA S.A. de C.V., Varsovia No. 36, MEXICO 6, D.F., Tel. 5-33-11-80.
Netherlands: PHILIPS NEDERLAND B.V., Afd. Elonco, Boschdijk 525, NL-4510 EINDHOVEN, Tei. (040) 79 33 33.
New Zealand: Philips Electrical Ind. Ltd., Elcoma Division, 2 Wagener Place, St. Lukes, AUCKLAND, Tel. 867 119.
Norway: ELECTRONICA A/S., Vitaminveien 11, P.O. Box 29, Grefsen, OSLO 4, Tel. (02) 1505 90.
Peru: CADESA, Jr. llo, No. 216, Apartado 10132, LIMA, Tel. 27 73 17.
Philippines: ELDAC, Philips Industrial Dev. Inc., 2246 Pasong Tamo, MAKATI-RIZAL, Tel. 86-89-51 to 59.
Portugal PHILIPS PORTUGESA S.A.R.L., Av. Eng. Duharte Pacheco 6, LISBOA 1, Tel. 68 31 21.
Singapore: PHILIPS SINGAPORE PTE LTD., Elcoma Div., POB 340, Toa Payoh CPO, Lorong 1, Toa Payoh, SINGAPORE 12, Tel. 5388 11.
South Africa: EDAC (Pty.) Ltd., South Park Lane, New Doornfontein, JOHANNESBURG 2001, Tel. 24/6701.
Spain: COPRESA S.A., Balmes 22, BARCELONA 7, Tel. 301 63 12.
Sweden: A.B. ELCOMA, Lidingévagen 50, S-10 250 STOCKHOLM 27, Tel. 08/67 97 80.
Switzerland: PHILIPS A.G., Eicoma Dept., Edenstrasse 20, CH-8027 ZURICH, Tel. 01/44 22 11.
Taiwan: PHILIPS TAIWAN LTD., 3rd F1., San Min Building, 57-1, Chung Shan N. Rd, Section 2, P.O. Box 22978, TAIPEI, Tel. 5513101-5.
Turkey: TURK PHILIPS TICARET A.S., EMET Department, Inonu Cad. No. 78-80, ISTANBUL, Tel. 43 59 10.
United Kingdom: MULLARD LTD., Mullard House, Torrington Place, LONDON WC1E 7HD, Tel. 01-580 6633.
United States: (Acti''e devices & Materials) AMPEREX SALES CORP., 230, Duffy Avenue, HICKSVILLE, N.Y. 11802, Tel. (516) 931-6200.
(Par~ :de.'ces)MEPCO/ELECTRA INC., Columbia Rd., MORRISTOWN, N.J. 07960, Tel. (201) 539-2000.
(€% .ucts) SIGNETICS CORPORATION, 811 East Arques Avenue, SUNNYVALE, California 94086, Tel. (408) 739-7700.
Uruguay: LUZ/ =0 30MS AL, Rondeau 156 . piso 5, MONTEVIDEO, Tel. 943 21.
Venezuela: ING. */ZHEZOQLANAS PHILIPS . /., Elcoma Dept., A. Ppal de los Ruices, Edif. Centro Colgate, Apdo 1167, CARACAS, Tel. 36 05 11.

A3 R © N.V. Philips’ Gloeilampenfabrieken

This information iz furnishex: ;-‘gr_gu;ﬁanee, and «i Po guaran.es s to its accuracy or completeness; its publication conveys no licence under any patent or other right,
s0r doos the pub! o assume liabitity for any consequance of its use; specifications and availability of goods mentioned in it are subject to change without notice; it is not
to bereproduced in aiiy way, i whole oF in part, without the written consent of the publisher.

Printed in The Netherlands 3-77 9399 509 58101

PIPBUG. RTINS 15 1910

SilnoLics

PIPBUG S 850

INTRODUCTION

The PIPBUG program is provided as part of the 2650
PC1001 so that the user has immediately available to him
the tools necessary to run programs on the 2650 micro-
processor. Features include support of a user terminal,
papertape load and dump, memory examine and alter, and
breakpoints. The 2650 PC1001 card itself is described in
detail in applications note SP 50.

DESCRIPTION

The PIPBUG program is started by pressing the reset
button on the card. It outputs the user prompt character
of ‘*'. A command is then entered, starting with an alpha
character indicating the operation wanted, followed by any
required parameters separated by spaces, and all terminated
by a carriage return. The parameters must be given as
hexadecimal numbers. Leading zeros are unnecessary. For
example, ‘008F’ and ‘8F’ are the same address. The error
message for an illegal command or parameter is ‘?’, after
which the user can enter a new command line. The delete
key can be used to delete the previous character.

The program fits in the first 1K bytes of memory in the
PROM. Also, the 63 bytes of RAM from location 1024 to
1087 are required for buffers and temporary storage.
Locations 0 to 63 are part of the interrupt vector. To fit
within 1K bytes the program uses subroutines with a

maximum nested depth of three.

In the explanations of the commands CR means the
carriage return key and LF means the line feed key. The
symbol i means there must be at least one space.

COMMANDS

1. Alter Memory Aaaaa CR
Action: Outputs aaaalbcc where ‘aaaa’ is a memory
location and ‘cc’ is its content. User can
respond with:
1) CR which ends the command
2) LF whichwill display the next memory
location
3) nnCR which will replace ‘cc’ by ‘nn’
at location ‘aaaa’ and end the command
4) nn LF which will replace ‘cc’ by 'nn’
and then display the next location.

1. Load from Papertape L CR
Action: Will start reading papertape expecting blocks
of data in the hex object format. In case of
illegal characters, a BCC error, or a length
error, the papertape will be stopped and the
command ended with the standard error
message.

2650 MICROPROCESSOR
APPLICATIONS MEMO

At the end of a successful load, control
is passed to the address in the EOF block.
This would usually be back to the PIPBUG
program.

I1l. Dump to Papertape Dssssileeee CR
Action: Will punch a leader of 50 blanks and then
output the contents of locations ‘ssss’ to
‘eeee’, inclusive, in hex object format. When
done, the EOF block and a trailer of 50

blanks are punched.

IV. See and Set the Microprocessor Sn CR
Registers
Action: The parameter ‘n’ is in the range 0 to 8 and
selects a particular register;
0 = register O
1 = register 1 bank #0
2 = register 2 bank #0
3 = register 3 bank #0
4 = register 1 bank # 1
5 = register 2 bank # 1

6 = register 3 bank # 1
7 = PSW upper
8 = PSW lower

The contents will be displayed. The user can

respond with:

1) CR which ends the command

2) LF which displays the next register’s
content

3) nn CR which resets the register to ‘nn’
and ends the command

4) nn LF which resets the register to ‘nn’
and displays the next register’s content

V. GoTo Gaaaa CR
Action: Control will be transferred to location ‘aaaa’
after restoring the register contents.

VI. Clear Breakpoints Ci CR
Action: Will clear the ith breakpoint. |f the ith break-
point is not set, gives error message.

VIl. Set Breakpoints Bipaaaa CR
Action: Will set the ith breakpoint at the address
‘aaaa’. The current firmware supports two
breakpoints.

BREAKPOINTS

Breakpoints are a way t . . “h. of the program
and microprocessor’s staiu "} r to executing
at the breakpoint addr>-s, s 0 breakpoints

¢ .t com:'r..nds.

1

to be set. So i equals r2

SIGNETICS PIPBUG = SS50

BREAKPOINTS (Continued)

Setting a breakpoint at location ‘1053" with the command
‘B1 1053’ causes the two bytes of program at ‘1053’ and
‘1054’ to be stored in a table in PIPBUG’s RAM area.
They are replaced by the two byte instruction ‘ZBRR
*BKP1'. At location ‘BKP1’ in the interrupt vector is the
address of the 1st breakpoint handling routine. There is a
separate routine for the 2nd breakpoint.

When the user program executes the instruction at location
‘1053’, the ZBRR instruction jumps to the breakpoint
routine. This routine first saves the microprocessor registers,
then restores the two bytes of user program to locations
‘1053’ and ‘1054', prints the breakpoint address ‘1053’,
and finally jumps to PIPBUG. Now the user can use the

See command to examine the microprocessor registers.

Since the breakpoints are software implemented and are
cleared when reached, there will not be another break-
point when the user program is re-executed. It must be
explicitly re-set with the Breakpoint command. Break-
points will remain in memory until executed or explicitly
cleared with the Clear command.

SUGGESTIONS ON USING

Having written and assembled a program, the user has a
papertape containing the object code for the program. The
Load command is used to read the code into the RAM of

the 2650 PC1001 card. In the operand field of the END
directive of the program, the user should put blanks or a
zero, so that after reading the tape PIPBUG restarts itself.

Most commonly the loaded program is still under develop-
ment. The user wants to run and test only parts of the
program. He can use the Goto and Breakpoint commands
to isolate the particular code sequence. The two break-
points can be set at the normal and error exits of the code.
Using the Goto command the user then transfers control

LI UpPiUlooovr o

command.

If there is a bug, the user can make machine language
patches to the program with the Alter command. Great
care should be taken when doing this, since assemblers are
more methodical than people. The Dump command can
be used to save on papertape the program and all patches
so that the debugging can be continued at some later time.

SUMMARY

Alter memory

Set Breakpoint

Clear Breakpoint

Dump memory to papertape
Goto address

Load memory from papertape
See and alter registers

YrOooOm@>

SIGNETICS PIPBUG = SS50

APPENDIX
PIP ASSEMBELER YERSION 3 LEWVEL | PAGE 1
LINE ADDR Bl B2 BZ Bd ERR SOURCE
1 gpa1 P EQY 1
Z aeaz N EQU 2
3 pEea Z EQY a
4 gaaz LCOM ECy H*@B2" LOGICAL COMPARE
5 BBa1 CAR EGQU H*@1" CARRY
A AAsA SENS EQU H*z@” SENSE
a1] FLAG EGIU H* 48" FLAG
g apze 11 EQU H*'z8* INTERRUPT IMHIB
9 paze 1D EQL H* 28" IMTER DIGIT CAR
18 gpng oWF EQU H? @ OWEFFLO
11 Bgga F& ECIL A
iz aaal 1 EQU 1
12 apaz e EQL 2
14 aaa3 R3 ECIL 3
15 BER3 1M EQLU 3
16 BREA B EQL 4
17 aagz LT EQ 2
18 aaal GT ECIL 1
19 gRas 1T EQL H*B&”"
26 Be18 RS EQL H*1/"
21 paze SPAC ECIL H*28"
22 Apa1 ErMA ¥ EQ 1 NO. BKPTS - 1
23 PpAarF LELE EQL H*FF*
24 BAAD CR ECL 13
23 Ba8A LF ECU 18
26 BE1g ELEHM ECH 28
27 BAA3A STAR ECH [
28 4
z9 ORGE 5}
iR BBes a8y 3F INIT LODI.R3 a3 ZERD MARE YECTOR AND O
21 paaz 28 EORZ (35|
32 8aR3 CF 44 @@ AIHI STER.RB CoOMR3.-
33 Appe SB 7B BRMRE.R3 RINI
324 paRd B4 77 LODI.R@ H*?7"
35 paap CC B4 B9 STRA.RA HE0T LOAD THE RAM CODE TO S
36 ogah o4 1B LODI.RA H"1B"
37 @paF CC a4 BB STRER.RA wEOT+2
38 A1z g4 28 LODI.RE H 28"
39 8814 CC a4 Ac STER.REB wia
48 @iy 1B Aag BCTR .UM
41 @A Bl &A@ WEC Tty EREAKPOIMT YECTOR
42 8aiE a1l &k BCOM
£
COMMAMD HAMDLER
aF EBLIG LODI.RA AT ERREOR RETURM FOE ALL R
Az B4 i CouT
FF MELG H FF~ START OF CMD LOOP. RES
Al gA CHELF
20 4% SR
Az B a1 CouT
2D BSTR . UN L. IHE DOMT CARE IF THERE IS

EORZ FE

SIGNETICS PIPBUG = SS50

PIFP ASSEMBLER YERSION 2 LEVEL t
LIME ADDE Bl B2 BZ B4 ERR SOURCE
93

54 €
55

S fe 2
S

41

1IC B8 AE

o

1IC Al ES

Ed 43

Al CH

oo

3o T3 L0 T Ty L e G 0o S A0 00 N T
1S =1
o
SRl
m
BN

PAD Oy fuoee TTHTE I
—
[

[

=]

Ty i il

[y
= 5t

ax]

1c az 18

£

ol

e
P s R e
DI 3 ¢ O Y R KN S L S 1 |

T LRy O O £y O 0 00
i

T

P Y

—-

3 el T3 T
—
[l
()

SRR

T
>

£
=

CODE

858 @7y F LIME
A5D CF &4 27
=7 1 LLIM
1
Az 86

d v Pt T o TV T U0 fo o T

R B et e T B T B Y Bt |

J e 020 L0 0~ O i

F
(= v
=] " B 13
2 FoAZ B4
&3 7B
el =T
25 @ E«4 an ALIN
26 BaYE 2914
a7 9avn as gl ELIH
32 BEYF A3 CLIM

i Sl
ica)

e}

R

DLIM

Al CRLF

B TH

* IMPUT A CHMD

STRA.RA
LODA. R
COMI.RE
BCTH.EQ
COMI.RE
BCTR.EQ
COMI.RE
BCTR.ED
COMI.RB
BCTH.EDQ
COMI.REE
BCTA.ED
COMI.RE
BCTR.EDQ
COrMl.RE
BCTAR.ED
BCTA. UM

IS5 1=CF
LODI.RE
STREA.RS
COMILRE
BLTR.EN
BETA.UH
CoMi.RA
BLFRE.ED
COMI.RE
BCTR.ER
LODA . RE
BZTA. UM
SUBI.RE
BCTR . LIH
I1.RA
F.ED

Lan;El
LOn?
BCTRE.H

BFTRE
EUFF
[hh
BLTE
P
BEFT
s
CLE
ATDe
LUrMP
G
GOTO
AL
LOATr
SR
SREG
EBLNS

LINE INTO BUFFER
2=LF

I=MSG+CR A=MSGE+LF

-1

BFTR

ELEM

ELIH OM BUFFER OWERFLOL FOR
CHIM GET CHAR

LELE

FL T

! ECHO AaMD BACK PTE
LLIM

BUFF.R3

CouT

i

LLIH

LR

BLIM

1

[

DLIM

CODE
CHT

SRE+ STROE CHAR AMD ECHO

SIGNETICS PIPBUG = SS50

PIF ASSEMBLERE VERSION 3 LEVEL 1 PAGE 3
LINE ADDRE Bl B2 BZ B4 ERR SDURCE
185 * SUBR THAT STORES DOUBLE PRECISION INTO TEMFP
185 #RRA4d CD B4 8o STRT STRAL.RI1 TEMP
187 8AA7 CE A4 BE STRALRZ TEMP+1
188 a8AA 17 RETC . UM
183 * DISPLAY AND ALTER MEMORY
118 A8AB 3F B2 LB ALTE BSTA. UM GHUM
111 AARE 3B 74 LALT ESTR. UM STRET
112 gaBR 3F 82 &3 BSTH. UN BOUT
113 AAEZ 80 B4 /aE LODR.R1 TEMP+1
114 BABS ZF @2 &9 BSTA. N BOUT
115 BaE2 3F A3 SE BSTA. UM FORM
116 AREC @ADL 24 @b LODA.RT *TEMP DISPLAY CONTENT
117 ABBRF 3F B2 ©9 BSTA. UM BOUT
118 8BC2 3F A3 =B BSTA. UM FORM
119 gaCS 3F ap SB BSTA. UM LIMHE
126 BACE AC A4 2R LODA.REE CODE
121 AACE E4 B2 COMI.RA 2
122 aach 1E gg 22 BCTHLLT MELUG
123 aabe 18 11 BCTR.EQ DELT
124 aaD2 CC 84 11 CALT STRA.RA TEME
125 pAaDS 3F Bz DB BSTA.UN UM
126 AALE CE 84 @b STRA.EZ #TEMP UPDATE COMTEMTS
127 Aape ac a4 11 LODA.EE TEMR
128 BADE E4 B4 COMI.Ra <}
129 ABER 2C 8a 27 BCFA.ED MBUG
138 8AE3 @5 &l DALT LonI.r2 1 IMCR CURRENT ADDRESS
121 BRES RE B4 AE ADDA.RE2 TEMP+1
132 BAES B85 B8a LODI.EL 5]
133 BBEAR 77 B8 FFSL (A
124 BRAEC 8D 84 AD ADDALEL TEMP
135 BBEF 75 Ar {=1=11 1IC
136 BAF1 1F 88 AE BCTAE. UM LALT
a7 # SELECTIVELY DISPLAY AMD ALTER REGISTERS
138 BAF4 3F A2 DE SREG BSTA. UM R GET IMDEX 0OF REG
139 BAFT E& 88 LSFE COMI.RZ g CHECKE RANGE
14 @AaFs 1D a@ 1o BCTR.GT EBUG
141 BAFC CE 84 11 STRA.RZ2 TEMR
142 OAFF BE &4 @A LODA. =B COM.E2 DISPLAY COMTEMTS
14z g1@z C1 5TRE F1
144 A1A3 3F B2 &2 BSTA. LM BEOUT
145 BiAE 3F B2 =B ESTA.UH FORF
146 8132 3F A@ 3B BSTA. LM LIHE
147 BiBC BC B4 2A LODA. R CODE
148 B1AF E4 a2 COMILER 2
11 L el ' C
14 LF
16 1 RSRE UPDATE CONTENTS. THEHM
19
1z
1T A 11
= Sel BE MR <!
B1ZE Be COMILEZ g MUST UPDATE PSL LOWER

SIGNETICS PIPBUG = SS50

PIP ASSEMBLER VERSION 3 LEVEL 1 PAGE 4
LINE ADDR B1 B2 B3 B4 ERR SOURCE

73 BCFR.EQ BSRE
BH STRA.RA =E0T+1
aF BSRE LODA.RE TEMD
COMI.EB 3
22 BCTR.EQ MBUG
11 CSRE LODE.R2 TEMR
ADDI.RZ 1
Fr BCTA. UM L5SFE
#® GOTO ADDRESS
=) SOT0 S TE . UM GHUM
S TH . UM 5TRT PUT ADDR IN RAM
168 814 Aac LODA.RE COM+?
169 8143 92 LS
178 Bldd A ; LODA LR Cop
B14dy BE Az LODAE. B2 CoM+2
Aladn AF Az LODALRE COb+3
Alal 77 FRSL FE BAHK OME
A1<dF AD LODA.R1 COr+
152 BE LODA.RZ COr+S
n153 LODR.R3 COM+E
A1ssE LODA.RA o
B156 (M= H*FF*
RIS =1 A3 BCTA.UN w=EOT AND BCTA.UHN $STEMP
*#BEREAKPOINT RUNTIME CODE
Bkal STRA.RA Cor EMTRY FOR EBEPT-1 VIR ¥
SRS
STEA.REB coM+a
STRA.RA #=EO0T+1 I RAM FOR REG RESTORE
LODI . RE 4] BEPT IMDEX
BCTR. UM BEEMN
BkE 2 STRE. RA CoM EMTRY FOR BRFT-2
SPEL
STRA.RE Cor+
STRA.RA H=EOT+1 IN FaM FOR FEG RESTORE
LODI . RE 1
; BEEN STRE. RE TEMR
2 SEEL

157 @125 2
58 8127 C

v} B Jn

i

) fa 3 OO
=
I

P I R I ey I Y B
[R

i

5t
.
a

s
B
=

ixd

il

=t

[]
T Tk

P

Y] [
L] iy
Vo =)

BB
5y

1+ 1 BAMK ZERO

AN}

T S e L
O S RN 11

Sl

ot

n e

—) TS
TaoTm
[

R Bt Bt Bt Bt B s B et Bt

(Rax]
¢ i

ooch 0o
i
A0 = M I~ fu a3

s

v T O Je O PO e TSR0 00 O L [y] P e

U s R R)

s S S
& J e e B RS AR R R
o0

U RY]

-

T (1 o G R e 030000 G
Gl M e T

oD LD LD D LD WD LD L0 0D OO 00 0o 0

U R R

TEMP
EOUT
TEMP+1

FRINT BKPT ADDIE

ol

SIGNETICS PIPBUG = SS50

-
—
-

ASSEMBLER YERSIODN 3 LEVEL 1

r
m

ADDRE Bl BZ BE B4 ERR SOURCE

]
oD

AS EF
A 1R

.

= iy
—t
s
ax]

=

T
i

AR RN
Lo M@ i

[l

Y]

P T O P (e T

FR R s s]

i)

=

0T Pt T B P Pt T T B0 [I

S

oy O

facx
1

8
AN Y

s

i

CLE

DL OO S T O [()

—_—

i

O 5 i T o

BEFPT

X R I Y]

TR T L

[N i:i R0 ie) el © o

Pt Pl [0 Tt [[I

T T B3 T
" Ty AU
Lo
(]

T

CO = Ty L

4

o

oy

nIspP

BSTH
BCTA

A UM
1M

AR
A RE

. RA

STRA
LODA

STRA

RETC

S TR

SUBI.R

LODA .
SRR
STRA.

T

ESTH.

LoDz

LD .
TR Z
IS TR . LM
BCTH.
45 TH.

A - A

< FE
< FE

M. R

A RE

- F3
- FE
A UM

BREAK POINT
HADR +LALR IS

» U
Ra

LI
LI

STRA . RE

Lr

BT
HBUG

TEMP
LADR . R2
TEMP+1
HDAT. R2

*TEMP
LDAT.R2

1
HTEMP .3

IR=T=0t4
BKFT ADDE.
HOE

MAkEk B2

EBUG
CLEEK
MELIG
[MRIRIR

TEME
LI
STET

IMDICATES IF
HDAT + LpaT

CLERR

FRGE 5]

LIKE ™MAMY SUBR HAS EEL ADLE

SET
IS TWO BYTE

CLEAR IT IF SET

CHECK RAMEE OM BKPT MUMBE

SET BKFT AMD CLE AMY E
ExISTING

GET BKPT ADDE

SURR TO STORE RI1-R2 IN

SAVE COMTEMTS

= ZBRE

SIGNETICS PIPBUG = SS50

FIP ASSEMBLER VERSION 3 LEVEL 1 PAGE
LIME ADDR B1 EZ B3 B4 ERR SDURCE

261 B223 9B DATA ~ YEC+H 88" +2
2EZ2 B
263 # IMPUT TLO HEX CHAES AND FORM AS BYTE IN R
2 Az 89 BIN BSTA.UN CHIM
28 10 ' STR . UM LEUF
2 FEL.R3
2 FEL.R3
2 REL.EZ
2 RFRL.EZ
27 a4 12 STRA.R2 TEMS
27 A2 BE STH. UM CHIH
27 K il BSTRE.UN LELP
273 B BF B4 12 IORA.EZ TEMS
274 A B3 Long B3
275 B 1 STREZ Rl
276 @ 3B ai BSTR. UM CBCC
277 BE2EC 17 RETC . UM
278 * CALCULATE THE BCC CHAR. EOR AMD THEN ROTATE LEFT
279 Al CBCC LOnZ F1
28 ZE 20 B4 20 EQRA.RE BCC
=R 41 D RRL.RE
2B B4l CCoBg 20 STEA.RB BCC
2EE BE243 17 RETC . LIH
284 * LOOKUFP ASCIT CHAR IM HEX WALUE TABLE
285 @y 1a LKUP LODI.RE3 16
2EE EF 42 59 ALk COMA-RB AMST.R3. -
I 1 FETC.ED
= EV 81 COMI-RE3 1
2a9 G9R T BCFR.LT ALk
29E # ABORT ExIT FROM AMY LEYEL OF SUBR
2 # USE FAS PTR SINCE POSSIELE EKPT PROG USING IT
297 B2SA AC @4 av ABRT LODA.RA COM+7
293 [A25E 64 40 IORI.EB H* 48"
294 BESS SRS
295 @256 AE 1T BCTa. UM EBUG
296 BAz259 31 3z 33 BIME T DATAH A B 123456729ABCDEF
5 EZg E7
2841 42
A5 45
A BYTE IM R1 QUTPUT IM HE=
12 BOUT S5TER.EL TEMS

BSTR. UM CECC
. R

H @F”

SIGNETICS PIPBUG = SS50

FIFP ASSEMBLER YERESION 3 LEVEL | PAGE v

r
i

ARDRE Bl B2 B B4 ERR SOURCE

Az B4 BSTA. UM CouT

RETC. UM
11A BAUD IMPUT FOR PAPERTAPE ANHD CHAR IMHZ CLOCK
In FFSL ES

LODI.RA Heogas EMABLE TAPE READER

WETC.REE

LODI.EL C |

LODI.RE2 =

ACHT SPSL

= {3}
B

*
CH

T~

O —
=

i

jan]

NN ST 1 R U WY |
Ry

]
(el

g e b D 50

: CHIH LOOK FOR STRART EIT
ED
BER WET

[0 I3 bt bt bt pmt et b b e e b
Do el I3 e 0L 0D O D e T e R

DISABLE TRFE READER

e Dl el (el Dl O e Ea]]G] Gl (M

nhy

e EB 18 BCHI LAY LEIT TO MIDDLE OF DATH
12 sPSU

n

AMDI.RE H 28" MOVE BIT 7 OF FE
ERE.E1

(2

INTO

F1
Rl
EDRE.FR2 BCHI
STR . U DAY
AHDI.RI H*7F*" LELETE PARITY BIT
A1 LoDE R
7ooig CPSL RE+LIC
17 RETC . 1M

DELAY FOR OHE BIT TIME

R T R

i

T P T D T e 0 00

35 A2AE 20 DLAY EORZ =35
a7 oA 2 YE BDF o5 F
35 @ g 7E BDRR.RA +

oLy BDRER.RE

U]

n
M
in

LODT.RE
v BOER . RE
RETC.U

— 1
ok
T

I
=
= TP T T T MG
e}
4
m

U]
R

il

—
=

3
=}
4

*®
TYo18 CouT PRS0 RS
5 TE a8 FFSU FLAG
;o2 STRE R2
LODT.R1 g

Ry
RRR AN

T

m

m
SIS I]
s DT L

Ty
(R

HERTR

PR,

STl

SIGNETICS PIPBUG = SS50

PIP ASSEMBLER VERSION 3 LEVEL 1 PAGE 8
LINE ADDRE El B2 B3 B4 ERR SOURCE

£
GET A NUMBER FROM THE BUFFER INTO Rt - R2
A B4 2A DU LODA.REA CODE
ig ar BCTR.Z LNLM SKIF SPACES UNTIL REAC
17 RETC.UN OF SPACE EMDING NUMBER
28 GMLUM EORZ R
Ol STEZ F1
Ccz STRZ R2
CCoBd 2Aa : STRA.RA CODE
BF B4 27 LHLUM LODA.R3 BPTRE
EF A4 29 COMA.R3E CHT CHECK FOR E O B
14 RETC.ER
AF 24 13 LODA.RB BUFF.R3.+ GET CHAR
Fi CF 84 27 STRA.-R3 EFTR
AZEE E4 2B coMlI.Ra SPAC
FOEZFE 18 B3 BLCTR.ED Dk
AzF2 3F B2 4de BMLIM BSTA. LN LEUP
A2FS @4 aF CHUM LODI.EB H*@F* Fl1=AE R2=DD
AzFy D2 ERL.EZ
AZFE D2 RREL.EZ
[AzFa D2 REL.EZ
B2 B2FA D2 FRL.REZ
AZFE <42 AMDE Rz
AZFC Dl FRL.EL
AZFD Il RREL.F1
" BZFE Dl RFEL.F1
T AZFF D FRL.E1
AzZa8 45 Fa AMDI.R1 H'F@~*
A2 A8 FA AHDI.R2 HF@a* RA=C R1=B8 R2=D@ R3=Y
4 &1 IOr2 F1
C1 STRS F1
15 B3 LoDz . R3
94 52 [0RE R2
295 2 STRZ R R1=BC R2=D%
296 SENNER LODI.RA 1
397 L CC B4 2A STRA.RB CODE
398 1B 51 BCTRE. UM L LU
29 #* DUMP TO FPAPER TAPE IM OBJECT FORMAT
ARE 49 DUrMF BSTR. UM EHLM START ADDRESS
=i 1 e A STA .UM STRT SUBR TO STORE RiI-RZ2 IN
482 44 BSTRE . UH EHUM
= 7l ADDI.R2 1
as PRS0 LIC
i ADDT R 4]
CPS L MEkE END ADDR NOT ITHCL
518 : TEMI
ia STRA.R: TEME+1
FIim ESTRE. LM GAP
18 LT -1
411) CHT
412 20 STA. L CRLF PUMCH FUR CE-LF AND ST
A13 LODI.RE STAR

10

SIGNETICS PIPBUG = SS50

PIP ASSEMBLER VERSION 3 LEVEL 1 PAGE g
LINE ADDE Bl B2 B3 B4 ERR SOURCE

414 8331 3ZF @2 B4 BSTA.UN couT
415 B354 28 EORZ F&
416 B335 CC A4 2C STRA.REBD BCC
417 B33 8D A4 AF LODA.R1 TEMA
418 B33E BE o4 14 LODA.R2 TEMO+1
419 B33E RE A4 BE SUBR.REZ TEMP+1 GET BYTE COUNT
dz28 B341 77 03 PPSL LC
421 B343 AD B4 BDh SUBR.R1 TEMP
422 B346 75 A8 CPSL L
423 A348 1E 8@ 1D BCTA.H EBLG START > END ADDR
424 B34B 139 IC BCTR.F BLUM CHT » HORMAL BLOCK 51
425 A34D SA 1C BEME.RE2 B D THIS IS SHORT BLOCK
426 A34F A7 a4 LODI.R3) EOF. FUHCH ZERD BLK
427 BA351 3IF A2 &9 CDUM BSTAH. LN BouUT
428 B354 FB VB BIER.R3 CDUM
429 B398 3B @87 BSTR. UM GAP
438 A3558 1F @R 22 BCTH. UM MBLG
431 % SUBRS FOR uUTPUTTIHu BLANKS
432 B35B A7 83 FORM LODI.RE3
433 A35D 1B a2 BCTR.UN ﬁuHP
“4 B35F By 32 GRP LODI.E3 5
35 A361 A4 28 RGAP LODI.ER SPAC
435 A362 3F B2 B4 BSTH. LN CouT
437 A366 FB 79 BDREE.R3 AGAP
438 A3e3 17 RETC . UM
439 B369 BE FF ADIIM LODI.R2 255
44 G368 CE 64 Z3 BLiUM STRA.REZ MOHT
441 B36E 8D B4 ab LODA.R1 TEMP STARTING ADDRESS
442 @371 3F B2 &9 BSTA.LUN BOUT
443 A374 8Dh 84 BE LODA.RI TEMP+1
444 A37Y7 3F A2 69 BSETA. LN BOUT
445 ES?R Ap A4 28 LODA.RL MCHT COUNT OF DATA BYTES IN
446 A37D 3F A2 69 BSTA. LN BOUT
447 D.n AL A4 2C LODA-EL BCC
448 B3832 3F A2 63 BSTA.UH EOUT
449 AEE6 BF A4 23 oM LODA.GR3 CHT
458 B389 AF A4 aDb LODA.RE *TEMP.R3. +
451 A3EC EF A4 28 COMR.RE3 MCHT
452 A38F 18 89 BCTR.EQ EDIM OUTPUT BCC
453 A391 CF Aad4 23 STRA.R3 CHT
454 B394 1 STRZ F1
455 R39S 3EF B2 &9 S TH . LN BOUT
456 A3Z98 1B BC BCTRE. UM DDLU
457 A39¢ A EDLA LODALRL BCC
458 B i STH. HH BOUT
459 f AE B LODA. TEMP+1
=15 SE HDDH,E MCHT
5 A5 LODI.REI &
W |"‘ F‘ F' E; L H {:
aD ADDA.RI TEMP
75 CPEL (A
3FF B8 A4 BETaE. UM STRT

11

SIGNETICS PIPBUG = SS50

12

FIF ASSEMBLER VERSION 3

LIME RDDE Bl EZ2 B3

LAV N R LW
Rt [xp
e 51 L0 nx
[]]
L

-

—

s L

=t e}

M il

o P

[N on

&
e b
ha

J 0 [
[l
BT TR
P L
]
]

3? 5

I

S

UREEI RIS
{_“El [I R I

3

TS
el el

I
[R
CDoLD

L
o
I
AR AR I A RO

o O on
A o R)

T L Ju Cef T

i1

i

R R oy

LEVEL 1
B4 ERR S0URCE

LOAD
LOAD

CLOA

i B LA DR o e e
o
=EOT

TEMP
TEM
TEME
TEM
EUFF
EFTH
MOMT
CHT

BCTA. UM

FDLM

FROM PAPERTAFE IN OBJIECT FORMAT

ESTH. LM
COMI.RE
BCFR.ED
EORE
STRA.RA
TS TE . LM
STRA.RL
STARL.UN
STRA.RL
ETE . LN
BERMHRE.R1
BECTH.UN
STRA.RL
BSTA. N
LODA.RA
BCFALZ
STRE
STRA.RES
TS TH - LM
LODA.RE
COMA.RE
BCTR.ER
LOngE
STEA.REE
BIRE.EZ
LODA.R
BCFA.Z
BCTA. LM

ORG

FEAM DEFIMITIONS

RES
=t
BCTRE. UM
RES

x]

CHIM
STHE
LOrAD
45

BCC
EIM
TEMP
BIH
TEMP+1
EIH
ST

HTEMP

*TEMP.R3

A

FCHT
EIM
BCC
ERLIG
R3
CHT
BIM
CHT
FCHT
CLOR
F1

BLOA
BCC

EBLUG
LIOAD

H* 488

L
+
[R%]

LEHM

SN n e LR B LY A

LOOK. FOR START CHAR

READY ADDPR AND COUNT IN

CNT = B MEAMS EOF

CHECK BCC OW IMFORMATI

READ DATA

HRYE RERD BCC

STORE DATA

MUST PREDEEL THE TEMP

&\“\\“ =

from the world-wide Philips Group of Companies

EUROPEAN SALES OFFICES

Austria: Osterreichische Philips, Bauelemente Industrie G.m.b.H., Zieglergasse 6, Tel. 93 26 11, A-1072 WIEN.
Belgium: M.B.L.E., 80, rue des Deux Gares, Tel. 523 00 00, B-1070 BRUXELLES.

Denmark: Miniwatt A/S, Emdrupvej 115A, Tel. (01) 69 16 22, DK-2400 KOBENHAVN NV.

Finland: Oy Philips Ab, Elcoma Division, Kaivokatu 8, Tel. 1 72 71, SF-00100 HELSINKI 10.

France: R.T.C., La Radiotechnique-Compelec, 130 Avenue Ledru Rollin, Tel. 355-44-99, F-75540 PARIS 11.
Germany: Valvo, UB Bauelemente der Philips G.m.b.H., Valvo Haus, Burchardstrasse 19, Tel. (040) 3296-1, D-2 HAMBURG 1.
Greece: Philips S.A. Hellénique, Elcoma Division, 52, Av. Syngrou, Tel. 915311, ATHENS.

Ireland: Philips Electrical (Ireland) Ltd., Newstead, Clonskeagh, Tel. 69 33 55, DUBLIN 14.

Italy: Philips S.p.A., Sezione Elcoma, Piazza IV Novembre 3, Tel. 2-6994, 1-20124 MILANO.

Netherlands: Philips Nederland B.V., Afd. Elonco, Boschdijk 525, Tel. (040) 79 33 33, NL-4510 EINDHOVEN.
Norway: Electronica A.S., Vitaminveien 11, Tel. (02) 15 05 90, P. O. Box 29, Grefsen, OSLO 4.

Paﬁuga!: Philins Portuguesa S.A.R L Av. Eng. Duharte Pacheco 8 Tel. 68 31 21 LISROA 1,

NHips Foriuguesa o.A.n.i.., AV. chg. vunarne ~acncCe o, 181. 3 S , =S OUA

Spain: COPRESA S.A., Balmes 22, Tel. 301 63 12 BARCELONA 7.

Sweden: ELCOMA A.B., Lidingovagen 50, Tel. 08/67 97 80, S-10 250 STOCKHOLM 27.

Switzerland: Philips A.G., Elcoma Dept., Edenstrasse 20, Tel. 01/44 22 11, CH-8027 ZURICH.

Turkey: Tirk Philips Ticaret A.S., EMET Department, Gimuissuyu Cad. 78-80, Tel. 45.32.50, Beyogli, ISTANBUL.
United Kingdom: Mullard Ltd., Mullard House, Torrington Place, Tel. 01-580 6633, LONDON WC1E 7HD.

©N.V. Philips’ Gloeilampentfabrieken
This information is furnished for guidance, and with no guarantees as to its accuracy or completeness; its publication conveys no licence under any patent or other right, nor

does the puplisher assqme liability for any consequence of its use; specifications and availability of goods mentioned in it are subject to change without notice; it is not to be
reproduced in any way, in whole or in part, without the written consent of the publisher

Printed in The Netherlands 2-76 9399 509 52261

2650 INITIALIZATION..............MP51

Sinnotics

2630 INITIALIZATION

MPa1

At power-up the status of the 2650 is undefined. The Reset
signal should be raised for at least three clock periods.
This forces execution of the instruction at location 0. Once
the system is started up, the first program to run is generally
responsible for initializing the microprocessor, memory, and
/O devices to their desired initial states. The type of 1/0
initialization isdependent on the particular device. Contents
of RAM are undefined at power-up and must be set to
their desired initial states.

Program status word initialization:

1.

Interrupts can be inhibited as a first step in initialization.
The Reset clears the Interrupt Inhibit bit and the internal
Interrupt Waiting signal. After the remainder of the status
bits, the memory, and the I/O is initialized, interrupts
can be permitted. This procedure will prevent unwanted
interrupts during system initialization. If the system
does not utilize interrupts, the Interrupt Inhibit bit
can be left set on when system initialization is com-
plete. This approach will assure that a spurrious interrupt
will not occur.

. The Stack Pointer may be initialized to zero. The Stack

Pointer should not be modified during the execution of
a program. This pointer is under the control of the

APPLICATIONS MEMO

processor. Modification by a program could have un-
wanted results, i.e., to the instruction address register.

. It is generally unnecessary to initialize the Condition

Code, Interdigit Carry, Overflow, and Carry bits. These
bits are normally set by arithmetic and logical operations
before they are tested. However, if the With Carry bit
is set on, then the Carry bit should be initialized
correctly for the first arithmetic instruction.

. The Register Select bit should be set to a known state,

e.g. if bank 1 registers are reserved for interrupt routines,
the register select bit should be initialized to bank O.

. The With Carry bit can be initialized to the state desired

for most arithmetic and rotate operations. Then if a
different state is desired for some operations, the With
Carry bit can be changed and then restored after these
operations.

. The same philosophy used for the With Carry bit also

applies to the Compare bit. Set the Compare bit initially
to the most frequent types of compares made, logical
or arithmetic.

. The Sense bit cannot be modified by a program. The

Flag bit may need to be initialized if there is a device
connected to it such as a TTY which needs stop bits
(binary one) when not receiving data.

©N.V. Philips’ Gloeilampenfabrieken

This information is furnished for guidance, and with no guarantees as to its accuracy or completeness; its publication conveys no licence under any patent or other right, nor
does the publisher assume liability for any consequence of its use; specifications and availability of goods mentioned in it are subject to change without notice; it is not to be
reproduced in any way, in whole or in part, without the written consent of the publisher

Printed in The Netherlands

2-76

9399 509 52061

2650 DEMO

S n S m—— - =

SYS | EM
SP51

UL H

2650 DEMO SYSTEM SP51

GENERAL

The Demo System (DS) is a hardware base for use with the
2650 CPU printed circuit board (PC1001). The DS provides
the user of the 2650 with a convenient ““lab bench’’ set-up
for exercising the PC1001 CPU board. The user may
expand memory, implement |/O functions, and step through
program instructions one at a time using the DS. When the
DS iscombined with a CPU board (PC1001) and a keyboard
terminal, the user is equipped with everything he needs to
exercise any of the software or hardware features of the
2650. There are two versions of the DS, the DS1000 and
the DS2000. The two Demo Systems are the same except
that the DS2000 has a built-in power supply and therefore
does not have the power supply binding posts.

FEATURES

The DS provides several connectors to aid the user in exer-
cising the PC1001 CPU board including one for the CPU

2650 MICROPROCESSOR
APPLICATIONS MEMO

board itself, one for a memory expansion board, four for
1/0 ports, and two for communicating with the user’s
terminal. There are four sets of LED lamps that display the
information on the address bus, the data bus, and the two
non-extended /O ports. Two control switches (RUN/
PAUSE, and STEP) allow the user to place the 2650 in the
WAIT mode and step through program execution one
instruction at a time. A reset button is provided on the DS.
The DS1000 version has five-way binding posts for
connection to external power supplies. The DS2000 has
built-in power supplies and does not have the five-way
binding posts.

CONNECTORS:

2650 CPU Board Edge Connector (J8). The CPU board
connector is an Amphenol dual 50-pin connector (series
225) with 0.125-inch contact centers. The 2650 CPU
board (PC1001) is inserted into J8 to complete the Demo

CPU BOARD AND USER BOARD CONNECTORS

FUNCTION FUNCTION FUNCTION FUNCTION
PIN# | (J7 & J8) | PIN# (J8 ONLY)* PIN#| (J7&J8) | PIN# (J8 ONLY)*
1 | GND A GND 26 | INTREQ d OPC 3
2 | GND B GND 27 | PAUSE e OPC 4
3 | NC** C NC 28 | NC f OPC5
4 | DBUSO D OPD O 29 | NC g OPC 6
5 | DBUST E OPD 1 30 | NC h OPC 7
6 | DBUS2 F OPD 2 31 | NC i EIPC
7 | DBUS3 H OPD 3 32 | NC k IPD O
8 | DBUSA J OPD 4 33 | ABUS 11 m IPD 1
9 | DBUSS K OPD 5 34 | ABUS 13 n IPD 2
10 | DBUS6 L OPD 6 35 | ABUS 12 P IPD 3
11 | DBUS7 M OPD 7 36 | ABUS 14 r IPD 4
12* | EIPD N COPD 37 | ABUS 9 s IPD 5
13 | D/C P | TTY SERIAL IN + 38 | ABUS 10 t IPD 6
14 | DMA R | TTY SERIAL IN - 39 | ABUS 8 u IPD 7
15 | E/NE S | TTY SERIAL OUT + 40 | ABUS 7 v IPC 0
16 | INTACK T | TTY SERIAL OUT - 41 | ABUS 6 w IPC 1
17 | R/w U | RS232 GROUND 42 | ABUS 5 X IPC 2
18 | WRP V | RS232 OUTPUT 43 | ABUS 3 y IPC 3
19 | RUN/WAIT| w | TTY TAPE READER OUT - 44 | ABUSO z IPC 4
20 | OPREQ X | TTY TAPE READER OUT + 45 | ABUS 1 3 IPC 5
21 | M/i0 Y | RS232 INPUT 46 | ABUS 4 b IPC 6
22 | OPACK yA copPc 47 | ABUS 2 T IPC 7
23 | cLock a OPC 0 48 | +12v d +12V
24 | OPEX b OPC 1 49 | -12v g -12V

25 | RESET c OPC 2 50 | +5V] +5V

*J7 has no connections to these pins.
**NC = No Connection

TABLE 1

SIGNETICS 2650 DEMO SYSTEM = SP51

DEMO SYSTEM LAYOUT

J2

©) =

D

©) =

+5V
J1

+5V

GND

© =

Ja

J8

J3

SilnoLics

J5

O o

PAUSE RUN

-— MODE —

CQOQQOQQ QRQ RPPP 9QQQ Q000
L. —— OUTPUT PORT 1 J L — ADDRESS ——— - ‘
Q?QQOOOO OCO0O0O 0000
[E—— —OUTPUTPO:I:{TZ 2] OJ ~ L7 6 ° —4D-BUS3-- 2— 1 —0 J

©o ©

NOTE:
THE POWER SUPPLY BINDING POSTS ARE ONLY ON THE DS1000, NOT ON THE DS2000.

THE BINDING POSTS ARE SHOWN ON THIS DRAWING AND MARKED +5V, +12V, =12V, AND GND.

FIGURE 1

CONNECTORS (Continued)

System. The correlation between signal names and pin
numbers for J8 is given in Table 1. The location of J8 on
the DS is shown in Figure 1.

User Printed Circuit Board Edge Connector (J7). The user
‘board connector is the same type of connector as J8 (the

CPU board connector), and makes address, data and control
lines available for user-defined interface functions. As
shown in Table 1, the numbered pins of J7 and J8 have the
same signals on them (except pin 12), while the lettered

4

pins of J7 (pins A through §) are not used. The J7 con-
nector is typically used for memory expansion. The location
of J7 on the DS is shown in Figure 1.

Extended Input/Output DIP Sockets (J5 & J6). The
extended 1/O DIP sockets make the signals shown in
Table 2 available to the user of the DS system. With the
signals available on J5 and J6, any type of 1/O interface to
the 2650 may be implemented. The user of these sockets
must supply the cable between his system and the DS, as
well as the two 18-pin DIP plugs. The location of J5 and J6
is shown in Figure 1.

SIGNETICS 2650 DEMO SYSTEM = SP51

EXTENDED INPUT/OUTPUT DIP SOCKETS

RS232 Interface Connector (J2). The RS232 interface
connector is a TRW 25-pin connector (part #DB25S) for
communicating with RS232-compatible input/output
devices. The pins used on this connector are shown in
Table 4 along with the corresponding signal names. The
RS232 driver and receiver are on the PC1001 circuit
board and are wired to J2 through the DS circuit board.
The location of J2 on the DS board is shown in Figure 1.

RS232 INTERFACE CONNECTOR (J2)

PIN # FUNCTION — J2

RS232 GROUND
RS232 INPUT
RS232 OUTPUT
JUMPER
JUMPER

RS232 GROUND
JUMPER

20 JUMPER

ONO OTWN -

TTY INTERFACE DIP SOCKET (J1)

FUNCTION
PIN # J5 J6
1 DBUS 0 ABUS 0
2 DBUS 1 ABUS 1
3 DBUS 2 ABUS 2
4 DBUS 3 ABUS 3
5 DBUS 4 ABUS 4
6 DBUS 5 ABUS 5
7 DBUS 6 ABUS 6
8 DBUS 7 ABUS 7
9 OPACK ABUS 8
10 M/10 ABUS 9
1 OPREQ ABUS 10
12 RUN/WAIT ABUS 11
13 WRP ABUS 12
14 R/W ABUS 13
15 INTACK ABUS 14
16 E/NE PAUSE
17 DMVA INTREQ
18 D/C CLOCK
TABLE 2

Non-Extended Input/Output DIP Sockets (J3 & J4). Each
non-extended 1/O DIP socket (J3 and J4) makes the signals
shown in Table 3 available to the user of the DS system.
These sockets may be used for data or command transfer
between the 2650 CPU and a user-defined function, but
transfers via these channels are initiated by the CPU only.
The user of these sockets must supply the cable between
his system and the DS, as well as the 18-pin DIP plugs. The
location of J3 and J4 is shown in Figure 1.

NON-EXTENDED INPUT/OUTPUT DIP SOCKETS

FUNCTION
PIN # J3 J4
1 OPCO OPD O
2 OPC1 OPD 1
3 OPC 2 OPD 2
4 OPC 3 OPD 3
5 OPC4 OPD 4
6 OPC5 OPD 5
7 OPC 6 OPD 6
8 OPC 7 OPD 7
9 COPC COPD
10 EIPC EIPD
11 IPC 7 IPD 7
12 IPC 6 IPD 6
13 IPC5 IPD 5
14 IPC 4 IPD 4
15 IPC3 IPD 3
16 IPC 2 IPD 2
17 IPC 1 IPD 1
18 IPCO IPD O
TABLE 3

PIN # FUNCTION — J1

1 TTY SERIAL IN +

2 TTY SERIAL IN -

8 TTY TAPE READER OUT -
9 TTY TAPE READER OUT +
13 TTL SERIAL OUT -

14 TTL SERIAL OUT +

TABLE 4

TTY Interface DIP Socket (J1). The TTY interface socket
is a 14-pin DIP socket and is used for communicating with
a current loop serial interface. The pins used on this con-
nector are shown in Table 4 along with the corresponding
signal names. The current loop driver and receiver circuits
are on the PC1001 board and are wired to J1 through the
DS circuit board. The location of J1 on the DS board is
shown in Figure 1.

DISPLAYS:

Address Display LEDs. The address display LEDs reflect
the information on the address bus (ABUS 0-ABUS 14)
when the PC1001 board is plugged into J8. The logic
circuits on the DS board loads the information from the
address bus into D-type latches on the occurrence of every
Operation Request (OPREQ) pulse. Open collector inverters
at the output of the D-type latches drive the LED’s in a
common anode configuration.

Data Bus Display LEDs. The data bus display LEDs
reflect the information on the data bus (DBUS 0-DBUS 7)
when the PC1001 board is plugged into J8. The informa-
tion on the data bus is stored into D-type latches on every
OPREQ pulse. The LEDs are driven directly from the
D-type latches in a common anode configuration.

SIGNETICS 2650 DEMO SYSTEM = SP51

DISPLAYS (Continued)

Non-Extended Input/QOutput Channel LEDs. The non-
extended /O channel LEDs are driven by open collector
inverters in a common anode configuration. The inverters
are driven by the output latches of the two non-extended
1/0 ports on the PC1001 printed circuit board. Output
Port 1 (2), bit 0 corresponds to DBUS 0 and Output Port 1
(2), bit 7 corresponds to DBUS 7. A logic “'1"" output from
the 2650 turns on the LEDs, and a logic 0" turns off the
LED.

+5V LED and RUN LED. The +5V LED will glow when a
+5 volt power supply is connected to the Demo System.
The DS1000 requires an external power supply, but the
DS2000 has the +5 volt power supply built into the base.
The RUN LED will glow when the RUN/WAIT line from
the 2650 is in the “‘high’’ logic state. The location of these
LED’s is shown in Figure 1.

CONTROLS:

RESET Button. The reset button is a momentary switch
that is tied directly to the Reset input on J8 (pin 25), and
pulls that pin ““low’’ when the button is pushed. This button
clears the program counter in the 2650 to zero. The loca-
tion of the reset button is shown in Figure 1.

PAUSE Switch and STEP Button. The pause switch and
the step button are used together to cause the 2650
microprocessor to execute one instruction at a time. When
the pause switch is in the RUN position, the step button
does not affect the operation of the microprocessor.

When the pause switch is placed into the PAUSE position,
the PAUSE line on the 2650 is pulled “low’. When the
execution of the current instruction is completed, the
2650 will enter the WAIT mode and the RUN/WAIT line
will go “low”. If the step button is pressed, the PAUSE
line to the 2650 will be pulled “high’” until the RUN/
WAIT line goes “‘high”, indicating that the 2650 is in the
RUN mode. As soon as the RUN/WAIT line goes “high”,
the DS will again pull the PAUSE line “low”. The step
button will allow one instruction to be executed each
time it is pushed as long as the pause switch is in the
PAUSE position. When the pause switch is placed back
onto the RUN position, the PAUSE line will be pulled
“high’" and the 2650 will execute instructions in a con-
tinuous manner. The address and data displayed on the
DS LEDs in the WAIT mode reflect the address and the
first byte of the next instruction to be executed. The
location of the pause and step switches on the DS base is
shown in Figure 1.

LOGIC CIRCUITS

The logic circuits on the DS base are shown in Figure 2.

The logic circuits consist of address bus (ABUS) and data

bus (DBUS) latches, the pause and step logic, LED drivers,
-6

and a reset switch. The address and data bus are loaded into
latches on the DS during every OPREQ. The displays for
the address and data bus will flicker while the run LED is
“lighted”’, and will display the address and first byte of the
next instruction to be executed when in the step mode (run
LED off). The pause and step logic allows one instruction
to be executed at a time by pushing the step button when
the run/pause switch is in the PAUSE position. The non-
extended output ports are displayed on the DS, and the
reset button provides complete system reset by pushing
the button.

ADDRESS BUS:

The address bus latches are 74174 Hex D-type flip-flops
(IC1, 1C2, IC3). Open collector inverters (IC5, 1C6, IC7)
invert the “positive true’’ levels from the ABUS latches
and drive the address bus LEDs (L1-L15) in a common
anode configuration. A logic ONE on the address bus
“lights’’ the corresponding LED, and ABUS 0 corresponds
to the ADDRESS bit 0 LED. The ABUS latch is clocked
by the STRB signal which is generated by 4 inverters (IC7,
IC10). The inverters provide the logic function STRB =
OPREQ - CLOCK. The ABUS latches are reset by RESET.

DATA BUS:

The data bus latches are also 74174 Hex D-type flip-flops
(1C3, 1C4). Since the DBUS leaves the PC1001 with “"nega-
tive true’’ logic levels, the DBUS latches drive the LEDs
directly in a common anode configuration. A logic ONE in
the DBUS latches is a low voltage level and “lights’” the
corresponding LED. The DBUS bit 0 LED corresponds to
DBUS 0. The DBUS latch is also clocked by the signal
STRB, and reset by RESET.

PAUSE AND STEP:

The pause and step switches are de-bounced with S/R
latches. The step switch uses two NAND gates (IC11),
while the pause switch uses a D-type latch (IC12) to accom-
plish the de-bounce function. When the pause switch is in
the RUN position, SPAUSE is a logic ZERO and the

PAUSE line is held at logic ZERO (de-activated).

When the pause switch is set to the PAUSE position,
SPAUSE is a logic ONE and PAUSE will switch to a logic
ONE. When the PAUSE line switches to a logic ONE, the
2650 will finish executing the current instruction, fetch
the first byte of the next instruction from memory, and
enter the wait state. The RUN/WAITT line goes to a logic
ZERO when the 2650 enters the wait state. |f the step
switch is pushed, LSTEP clocks a logic ONE into the
CLSTEP latch (IC12) which sets PAUSE to a logic ZERO.
The 2650 then returns to the run mode, and the RUN/
WAIT line goes to a logic ONE. When the RUN/WAIT
line switches to a logic ONE, the CLSTEP latch is reset and

SIGNETICS 2650 DEMO SYSTEM = SP51

DS1000 LOGIC DIAGRAM

~
L | 2 | £ ! v _ S | S | 2 8
T = o] o emw o
naw onomd 3voslsz on3
E
Z 33091+ 9 -0 (1va™
E, (anen Y— ASi— .
WYASYIQ Disct oooisa | N0 ’ NODS 3O
SIvO| | S3unlvNels o Oy ane e O— wvo 0984 ~2805 ¢'H 3y 3390Q €
ONIMYHO 3vOS LON 00| fm\\ ‘AoD NOFAWS Livea Bf
SIWIESLYW J0 1S T (aam) O st (amg) (O— s+ Uz Zay Sy moOOAmML by 2
= [e——— [oo o S.90vL 33V SIILAIN Y T A4
INGILIINNOD ON =N
Q413 —o! bh— ad00 1353y
Loaa — g L 940
2 —2 9
b < | e o & >
H 1 s | —w 4 B . 1 oo =
Queoss 2 7] ¢ | e Y bsosy —fo s wb IV
2 2 H — ¢— z \ o
- — - - y I 1 2 L= 9
REvI < o - - i 2 2 < ol— 2
4 o Pe————F ol —s — o ado |
irsine 2929 _m N ﬁ M_ oy \AN wT M
Ladn! 7EISy — 2 [Ty e s = L +L 7 ‘ 2
Anor¥S 2€2C0H | I oy oylv 3] e[zl oy SIyani m_ 2 '
E b M s So0T> | © 5%y
2 S ——
413 —{o bf— 940D 0n
L o4l — U g— L 240
Finoda0w3y 3aws da1 — - R s —a I— 2
bino waawss 3evi a1l — op— H Py o— < g
N —fe Sk > —# s
™ —u e < —s oy € b 20v40
o —fa £i— z —{on mﬁ 2 —n < T oma
— 10O WIS AL) —i% 2 — Y Z— i Y — 2 L e
40 L1l — o 4 —® o d40 —<) <
LOO IV 1L T - 2 S
1z 3 - e £
— < oy
G i < 5w N
o E NS+ As+ —&
-z A - ATI— 2 w
i —E AT+ AT+ — P o
—= 2 Srev L D41 — 3 —
=3 i 2 1 N)
¢ s A s 334
— = » —t (&)
—h € < —t Al —
— B 2 —x k2] uw
—~ B v Y e s
— [© Dl —a <
~—¥ I L Q41 —w
— o | 2 | ¢
—1% & S — s
—s - I3 —
—¢ 2t € — ¢
. < : L e 3
—lu \ VoY —w
Y © a4 —
—r 213 — ¢
—s L D40 — ¥
—Je 271 ¢
—2 S — s
—z v —3
e = £ | —r
—> e z | s
—a 24—) —s
. o © 240 — T
| —z 22— 90D — #
|- 2 f— anaNt 2€28Y — A -
|-y o= H1r0 330439 3ewl AL — ¥
[Ve S, —1ho W3R 3P AL — M 380Vvd
—n gl 1rdine 2£25% — A
| —n H— oY 2€238 —a
R [- — 1rc Jumsas ALl — L
s s 4100 YAt AL — S
I I — s w3t AL — 8
I git— + ™ Jwiwas ALl — 4
[T 1] 4oy —f w
i — I L 0do—{ W
—45 o 2 —
O e 21 3
| b 8— v 0 —f
A - < —
I o — z __ — 3 =
| —3 ot— ' — 3
| - © od4o —f a
* — > S oN— O
— 8 2f— aNg — 9
N — v — ans — v
1L
SIve [orav | NOi 950550 =]
SNOISINIH 1
Y
L B J € | v T S T E] z T 8

SIGNETICS 2650 DEMO SYSTEM = SP51

PAUSE returns to a logic ONE. This process is repeated
once each time the step button is pushed. When the pause
switch is returned to the RUN position, the PAUSE line is
set to a logic ZERO and the 2650 will return to the run
mode. The step/pause function is implemented with 1C11
(NAND gate) and IC12 (D-type latch).

OUTPUT CHANNEL DISPLAYS:

The two non-extended output channels implemented on the
PC1001 board are displayed on the DS. The output bits,
(OPD O - OPC 7) are received by open collector inverters
which in turn drive the LEDs. A logic ONE output to port 1
(WRTD instruction) will “light”” the corresponding OPD
LED, while a logic ONE to port 2 (WRTC instruction) will
“light” the corresponding OPC LED. Signal OPD O cor-
responds to Output Port 1 bit 0, and OPC 0 corresponds to
Output Port 2 bit 0.

RUN AND +5V DISPLAYS:

When the 2650 is in the run mode, the run LED will be
“lighted””. When +5 volts is applied across the red and
black terminals of the DS1000, the +5V LED will be
“lighted.”” When a.c. power is applied to the DS2000
(internal power supply), the +5V LED will be '‘lighted”.

RESET:

The reset switch (S5) pulls the RESET line to a logic ONE
when pushed. The RESET line is tied to the corresponding
pin on the PC1001 board (pin 25) as well as the ABUS and
DBUS latches on the DS.

DEMO SYSTEM PARTS LIST

Item # | Description ID# Mfg. and Part #
1. Base Box — -
2. Printed Circuit Board - -
3. 100-Pin Connector J7,J8 Amphenol, series 225
4. J3, J4 Cambion
18-Pin Dip Socket J6, J6 703-3787-01-04-16
5. 14-Pin Dip Socket J1 Cambion
703-4000-01-04-16
6. SPDT Push Button S4,85 Aico, MSP105F
Switch
7. SPDT Toggle Switch S3 Alco, MTA106D
8 LED L1-L41 | H.P.
5082-4870450
9. 5-Way Binding Post H.H. Smith
10. RS232 Connector J2 TRW Cinch DB25S
11. Carbon Composition R1-R29 | Allan Bradley
Resistors — 2K$2 RCO5GF202J
12. Aluminum Standoff H.H. Smith 8352
13. Tinnerman Speed Nuts Tinnerman
C8093-632

POWER SUPPLY SPECIFICATIONS
(DS1000 Only, Power Supply Included With DS2000)

5 Volt Power Supply

112 Volt Power Supply

© N.V. Philips' Gloeilampentabrieken

Line Regulation 0.1%
Load Regulation 0.1%
Ripple 10m Volts (maximum)
Response Time 30 usec
(maximum)

Output Current 4 amps

(To supply PC1001 only)
Overvoltage Protection
Current Overload Protection

Line Regulation 0.1%

Load Regulation 0.1%

Ripple 10m Volts (maximum)

Response Time 30 usec

(maximum)

Qutput Current 50 milliamps
(To supply PC1001 only)

Overvoltage Protection

Current Overload Protection

This information is furnished for guidance, and with no guarantees as to its accuracy or completeness; its publication conveys no licence under any patent or other right, nor

does the publisher assume liability for any consequence of its use; specifications and availability of goods mentioned in it are subject to change without notice: it is not to be

reproduced in any way, in whole or in part, without the written consent of the publisher.

4-76

9399 509 54061

SUPPORT SOFTWARE
FOR USE WITH THE

NCSS TIMESHARING
SYSTEMSP52

Sinohics

SUPPORT SOFTWARE FOR USE SP52
WITH THE NCSS TIMESHARING SYSTEM ~

1. INTRODUCTION

A series of programs is described that provide the micro-
processor application’s design engineer with on-line support
for the development of programs to be run on the Signetics
2650 microprocessor. These programs include a cross-
assembler, a cross-simulator, and two utility programs that
convert the object file produced by the assembler into
either one of two tape formats — one suitable for loading
into the 2650 microprocessor and the other suitable for
burning PROMs. The programs are accessed through a com-
munications terminal connected to a National CSS Data
Center via standard telephone lines.

The first few sections describe the available programs and
provide detailed instructions for using them. All available
usage options are included as reference information. A final
section, called ‘‘Operating Instructions,’”” provides the user
with step-by-step procedures for generating, editing, assem-
bling, punching, and simulating Signetics 2650 programs.
These procedures explain some of the more commonly used
features of both the NCSS and the Signetics facilities and
demonstrate how to use them.

2. USAGE OVERVIEW

The user creates the source file for his assembly language

program by using the EDIT facility available on the NCSS'

system, or he may have his program punched onto cards
and read into the system at.a NCSS Data Center. Once the
source file resides on the system, the user executes the
assembler, which translates symbolic source statements
into machine language instructions, and generates both an
assembled listing of the source file and an object file. If
the assembler reports any errors in the source file, the
EDIT facility may again be invoked to correct the source
file. The corrected source file is then resubmitted to the
assembler. Once the assembler reports no errors, the user
"may input the object file to the simulator which then
simulates execution of the program. The simulator provides
the following capabilities:

1) Establishes initial program conditions.
2) Monitors execution sequences.
3) Modifies the program until it operates as desired.

Once the program operates correctly, the user may repeat
the entire cycle: correct his source file; reassemble; and test
the new program using the simulator. When the program
is fully tested and debUgged, it may be punched onto tape.

2650 MICROPROCESSOR
APPLICATIONS MEMO

3. EXECUTING 2650 SUPPORT PROGRAMS

A. GENERAL

To execute any of the 2650 support programs, the follow-
ing command must be entered:

ATTACH P2650

This causes the P2650 “PROTECT’ Exec to execute. It
prints:

P2650 Attached as XXX, (Y) RUN? >
P2650 - Version ““No.”” - “Date”

Run on “DATE"

ENTER COMMAND (e.g., HELP) >

At this point the user may enter any one of the following
commands:

HELP Print Command List

HELP ‘NAME’ Print Command in Retail

QUIT Exit P2650 (Return to VP/CSS)
NEW Print New Features

PIPHASM Assemble 2650 Program
PIPSIM Simulate 2650 Program
PIPHTAP Punch PIPBUG Tape

PIPSTAP Punch PROM Burning Tape .

No other CSS command may be executed while under
control of the P2650 “PROTECT" Exec; e.g., you cannot
edit your file until you exit P2650 by typing “QUIT":

ENTER COMMAND > QUIT

B. HELP - AN ON-LINE INFORMATION RESOURCE
FACILITY

To determine what commands are currently available on
P2650, type:

HELP

To obtain information on how to enter any command
except HELP or QUIT, type HELP followed by the name
of the desired command; e.g.,

HELP PIPHASM

A description of the command and its format will be
printed.

4. PROGRAM DESCRIPTIONS

A. PIPHASM - SIGNETICS 2650 PIP ASSEMBLER

SIGNETICS SUPPORT SOFTWARE FOR USE WITH THE NCSS TIMESHARING SYSTEM = SP52

PIPHASM supports the 2650 assembler languages as speci-
fied in the basic manual set (2650 BM 1000). It outputs a
hexadecimal object module in a format acceptable to the
two tape-punching programs, PIPHTAP and PIPSTAP, and
to the simulator, PIPSIM.

Following is the format of the command for executing the
assembler:

PIPHASM SOURCE (DISPLAY) (WIDTH)*

where

PIPHASM causes the assembler to execute.

SOURCE is the name of the user’s source file. This
file has a type of “SYSIN".

DISPLAY is an optional parameter specifying that
the listing is to be printed either on the user’s console
(CON) or on the off-line printer (PTR). If this para-
meter is missing, CON is assumed.

WIDTH is an optional parameter specifying the line
width of the user’s console in characters per line—
either 80 characters (1) or 120 characters (0). If no
parameter is specified, 120 characters per line is
assumed. This parameter may be specified only if
CON has been specified by DISPLAY.

The object file produced by the assembler will have the
same file name as the input file with “.OBJ"’ concatenated
at the end; it will have a filetype of “"DATA"".

B. SIGNETICS 2650 SIMULATOR

The 2650 simulator, a program written in FORTRAN 1V,
simulates the execution of a program without using the
2650 processor. The simulator executes a 2650 program by
maintaining its own internal FORTRAN storage registers
to describe the program, the microprocessor registers, the
ROM/RAM memory configuration, and the input data to
be read dynamically from |/O devices. The user may
request traces of the processor status, dumps of the mem-
ory contents, and program timing statistics. Multiple
simulations of the same program with different parameters
may be executed during one simulation run.

The simulator requires as input both the program object
module produced by the 2650 assembler and a file of user
commands. It produces a listing of user commands, exe-
cutes the program, and prints (“‘displays’’) both static and
dynamic information as requested by the user commands.
The user may direct the input of the simulator either to a
terminal or to a line printer.

PIPSIM SOURCE COMMAND (DISPLAY)
where
PIPSIM causes the simulator to execute.

*Parenthesis indicate an optional parameter with a default value.

4

SOURCE is the name of the source file originally
submitted to the assembler. The simulator concate-
nates .OBJ onto the name of the source file and uses
the designator, SOURCE.QO, to find the file containing
the object module of the program to be executed.
File names are limited to eight characters. This object
module is ordinarily produced by the assembler and
has a filetype of “DATA."

COMMAND is the name of a file containing the user’s
commands. This file has a filetype of “DATA.”

DISPLAY is an optional parameter specifying the
destination of all printed output either to the user’s
console (CON) or to the off-line printer (PRT). If no
parameter is specified, the user’s console is assumed.

C. PAPER TAPE UTILITIES
1) PIPHTAP

PIPHTAP punches the “‘hex’ object file onto tape in a

format acceptable as input to the 2650 Prototyping Card
(2650 PC 1000). See Signetics Applications Memo SSb1
for the tape format specification.

The command format for PIPHTAP is:

PIPHTAP SOURCE

where

SOURCE is the name of the source file originally
submitted to the assembler.

When “EXECUTION:"" is printed, turn the punch on.
2) PIPSTAP

PIPSTAP punches the ““hex’ object file onto tape in a
form suitable for burning PROMs in SMS format. PIPSTAP
uses the same command format as PIPHTAP; i.e.,

PIPSTAP SOURCE
where

SOURCE is the name of the source file originally
submitted to the assembler.

PIPSTAP responds with a request for the following infor-
mation:

® The name of your object file.

® The value (two hexadecimal digits) representing
the unburned state of your PROM.

® The byte size (four decimal digits) of the PROMs
to be burned.
® Up to eight pairs of START/END addresses (four

hexadecimal digits). Each address pair identifies an
area of code in the object module.

SIGNETICS SUPPORT SOFTWARE FOR USE WITH THE NCSS TIMESHARING SYSTEM = SP52

NOTE: All numbers entered must contain leading zeros;
e.g., when entering the size of a PROM as 256, you must
enter 0256.

A START address larger than 7FFF, e.g., 8000, terminates
the input mode. Once the input mode is terminated, the
punch must be turned on. PIPSTAP punches and prints a
record for each PROM specified.

START/END addresses are rounded down/up to the limits
of the affected PROM. Thus if:

INITIAL PROM VALUE = FF,

PROM SIZE = 0256,

START ADDR = 0040,
and

END ADDR = 0240,

PIPSTAP punches three records: 0000 — OOFF, 0100 —
01FF, and 0200 — 02FF. Each of the records is preceded
by its initial address (0000, 0100, and 0200). This initial
address is punched into the tape so that it is visible. This
enables the tape to be separated into individual strips for
each PROM. The areas 0000 - 003F and 0241 - 02FF are
filled with FFs.

Each record is punched in exactly the order that its
START/END address was entered so that multiple records
may be punched for the same PROM. When PIPSTAP

stops punching, turn the punch off.

5. OPERATING INSTRUCTIONS FOR USING
THE NCSS TIMESHARING SERVICE

A. GENERAL

1. The computer requests the user to type information by
printing a > character at the start of a line.

2. The user terminates each line typed with a carriage
return.

3. The user deletes (tells the computer to ignore) char-
acters that were erroneously typed by typing the @
character. The computer deletes one preceding char-
acter for each @ character typed; e.g., the message
LANE@@®@INE corrects the word LANE to LINE. The
[character deletes all characters previously typed on
the line.

4. In all of the following examples, lines typed by the
user are underlined to distinguish them from lines
printed by the computer.

B. LOGGING IN TO CSS

1. Set the terminal to ““LINE’” mode.

2. Select the half-duplex mode using the HALF/FULL
duplex switch on your terminal (not required on some
terminals).

3. Dial the NCSS-supplied telephone number.

4. When you hear a high-pitched tone (indicating that you
have established communication with the computer),
place the telephone receiver in the modem coupler.

5. Log on by typing an ‘S’" or a ‘O’ followed by a carriage
return; i.e.,

S carriage return (when using a 10 cps terminal)

O carriage return (when using a 30 cps terminal)

In response, the system types
CSS.ONLINE — XXXX

to signal that you have reached an NCSS monitor. XXXX
is the name of the NCSS system with which you have
established a connection. The system also types the prompt
character >, indicating that it is ready to accept additional
input from your terminal. In response, you should type:

> L WEST XXXXXX

where XXXXXX is your user ID number.

The system will respond with

PASSWORD
h9:4:4:9:4:4:4:1

providing a blocked-out area in which you enter your
password. Type the password on top of the blocked-out
area and press the carriage return.

When the s&stem responds with
A/C INFO:

press the carriage return. (You may optionally enter some
accounting information if you desire.).

Messages from the NCSS system are printed here.
CSS.211.data

time>

C. USING THE EDITOR TO CREATE A NEW SOURCE
FILE AND/OR TO EDIT AN EXISTING SOURCE
FILE

7) Creatiﬁg a New Program Source File

a. On NCSS every file has a file name (FN) and a file
typé (FT). A file name is the unigue name to be
assigned to your program. Assign your program a file

"name of 1-to-4 alphanumeric characters beginning
with an alphabetic character. The file type of your
source program is ““SYSIN.” The object file created

5

SIGNETICS SUPPORT SOFTWARE FOR USE WITH THE NCSS TIMESHARING SYSTEM = SP52

by the assembler is your unique file name plus the
.OBJ appendage. The file type of object files is
“DATA."”

. The timesharing computer stores all source and
object files on disk. The user may obtain a directory
of the files stored in his user area by typing the
letter, L, e.g.,

time > L

FILENAME FILETYPE MODE ITEMS
PROG SYSIN P 40
PROG.OBJ DATA P 5

To create a new program source file, the user calls
the editor program with an indication of the file
name and file type to be created. The editor recog-
nizes that the file name specified is not in the direc-
tory and creates a new file.

time > E filename SYSIN
NEW FILE.
INPUT:

Type your program here. If you make mistakes, use
the @ key or finish typing your program and make
corrections as specified in step d below. Type an
additional carriage return after the last line to exit
the new file input mode. The system responds with:

EDIT:

If you wish to edit your program (i.e., correct any
typing errors or omissions), proceed to step 2b
below. If you do not wish to edit your program at
this time, type “FILE" to exit the editor.

2) Editing a Program Source File

The edit mode can be entered directly when the
editor is called by specifying a filename-filetype
already on disk; e.g., if PROG SYSIN already exists
on disk, enter:

time > E PROG SYSIN
EDIT:

Enter edit commands.

. The system’s editing capabilities are based on the
pointer concept; i.e., any line in a file can be located
by an imaginary pointer. This pointer can be moved
up or down, positioned at the beginning or end of
the fil: or positioned at a specific line. The position
of the ‘pointer determines where the next edit
request takes place. The position of the pointer is
referred to as the ““current line.”

Following is a list of some of the most frequently
used editing commands: (NOTE: Whenever “n” is
indicated in a command, it represents a decimal

number. If “n”" s left off the command, the number
1 is assumed.)

>T Moves the pointer to the first line of
the file.
>DOn Moves the pointer down n lines and

prints the new current line.

>UPn Moves the pointer up n lines and
prints the new current line.

> L/string/ Moves the pointer to the next line
which contains the character string
specified between the slash delimiters.
It then prints that line. It does not
search the current line for the string.
If the character string contains a/,
then some other character, such as the
$, may be used as the delimiter.

>Pn Print n lines starting with the current
line. Also move the pointer to the last
line printed. If n = 1 or is absent, the
current line is printed and the pointer
is not moved.

>DEn Delete n lines starting with the current
line.
>R text Replace the entire line following the

pointer with the text on the R line.
The text is separated from the R by
only 1 blank. Any additional spaces
are considered part of the text.

>C /string 1/ Replace character string 1 in the cur-

string 2/ rent line with character string 2. If
the / character appears in either of the
strings, use some other character, such
as the $, as the string delimiter.

>l An | followed by a carriage return
INPUT: puts the editor into input mode. This
>, request is issued to insert lines after
> the current line. After the “INPUT:"”
EDIT: message is printed, the user types one

or more lines to be inserted into the
program. The last line typed should
be followed by two carriage returns to
return to EDIT mode. The pointer is
moved to point to the last line in-
serted.

d. Error Messages

Editor error messages are as follows:

? Invalid edit request.

SIGNETICS SUPPORT SOFTWARE FOR USE WITH THE NCSS TIMESHARING SYSTEM = SP52

EOF: The end of file is reached by an edit
request. The request is terminated,
and the pointer is positioned after
the last line of the file.

TRUNCATED The following line was truncated as
shown. Only 72 character lines are
permitted.

e. Exiting the Editor

To exit the editor and save your new file, type:

S = I =
P =

To exit the editor without changing your original
file, type:

>QuIT

D. ASSEMBLING THE PROGRAM SOURCE FILE TO
CREATE A HEXADECIMAL FORMAT OBJECT
FILE FOR PROGRAM SIMULATION AND FOR
PROGRAM DEBUGGING ON THE PROTOTYPING
SYSTEM

time > ATTACH P2650

P2650 ATTACHED AS 192, (T)
P2650 - Version 2.0 - 1/56/76
RUN ON ‘DATE’

P2650 COMMAND (e.g., HELP) > PIPHASM filename
P2650 ASSEMBLER . ..

RUN ... (YES OR NO)? > YES
EXECUTION:

(Your assembly listing will be printed here. Be patient—
there may be a short delay before printing starts.)

TOTAL ASSEMBLER ERRORS = X

E. LOGGING OFF NCSS

Exit P2650, log off the NCSS system, and review your
program for logical and syntactical errors.

ENTER COMMAND > QUIT

time > LOGOUT

XXXX VPU'S,XX CONNECT HRS,XX 1/0

LOGGED OFF AT time ON date

F. CHECKING OUT YOUR PROGRAM USING THE
SIMULATOR

1. Log on the system as described in step B.

2. Using the editor program, create a file containing the
simulator commands. This file is of type DATA. The file
name may be the same as the source file name but with
a.TST appendage:

time > E filename.TST DATA
NEW FILE

INPUT:

NOTE: The directions for using the editor descr/bed in
steps C.1 and C.2 apply here also.

Enter commands here.

EDIT:
>FILE

3. Request a simulator run.
time > ATTACH P2650
P2650 ATTACHED AS 192, (T)
P2650 - Version 2.0 - 1/56/76
RUN ON ‘DATE’
P2650 COMMAND; e.g., ‘HELP" > PIPSIM filename
filename. TST
P2650 SIMULATOR . ..
RUN...(YESOR NO) ? > YES
EXECUTION:

The simulator listing is printed here.

G. LOGGING OFF

Exit P2650, log off the NCSS system, and review the
simulator listing to determine program correctness.

P2650 COMMAND > QUIT

time > LOGOUT

XXXX VPU’'S XX CONNECT HRS, XX i/0

LOGGED OFF AT time ON d

H. PUNCHING A PAPER TAPE FOR DEBUGGING ON
THE PROTOTYPE CARD SYSTEM

Check to ensure that the punch is off. After the “EXECU-
TION:" message is printed by the computer, turn the
punch on. Turn the punch off after it stops punching.

P2650 COMMAND > PIPHTAP filename

(NOTE: Do not use the .OBJ extension on the filename.
The punch program assumes this is the .OBJ file and auto-
matically adds this extension.)

EXECUTION:
.OBJ file will be listed here.
P2650 COMMAND > QUIT

Log off the system as in step G above.

I. PUNCHING A PAPER TAPE FOR BURNING PROMS

Check to see that the punch 15 off, and Ic:_;‘ ir:
using the procedures outlined.in step B.

~ the system

Execute PIPSTAP:

P2650 COMMAND (e.g., HELP) > PIPSTAP filename
P2650 PIPSTAP . ..
RUN...(YESORNO)? > YES

SIGNETICS SUPPORT SOFTWARE FOR USE WITH THE NCSS TIMESHARING SYSTEM m SP52

PIPSTAP responds with a request for the unburned state of
your PROM. Since PIPSTAP punches data into each loca-
tion of the PROM, if your object module does not fill the
entire PROM, PIPSTAP requires a value that can be used
for the other locations. This value must be entered as two
hexadecimal digits: '

INITIAL PROM VALUE? 00

PIPSTAP then asks for the size (in bytes) of your PROM,
which must be entered in four decimal digits. The maximum
allowable size is 1024.

PROM SIZE? 0256

PIPSTAP requests both a START and an END address for
the code to be punched. Use four hexadecimal digits for
each address as shown below. Don’t forget the leading
zeros.

START ADDR? 0000
END ADDR? 000A

PIPSTAP will request up to eight pairs of START/END
addresses. Enter a number larger than 7FFF, e.g., 8000,
when you have completely described the object module:

START ADDR? 8000

When you press
Carriage Return

PIPSTAP punches 50 frames of leader followed by the
PROM record specified by your START and END addresses.
The START address of your PROM, 0000, is punched into
the tape so that it is visible.

When punching is complete, turn the punch off and log off
the system.

6. REFERENCE DOCUMENTS
For additional information, consult the following manuals:

® Signetics 2650 Microprocessor Manual (2650BM 1000)
| =

e VP/CSS Reference Manual (Form 106-3, available
from NCSS)

® VP/CSS Edit Command (Form 108-4, available from
NCSS)

© N.V. Philips' Gloeilampentabrieken

nformation is turnished for guidance. and with no guarantees as to its accuracy or completeness; its publication conveys no licence under any patent or other right, nor
:s the publisher assume liability tor any consequence of its use: specifications and availability of goods mentioned in it are subject to change without notice; it is not to be

sproduced in any way. in whole or in part. without the written consent of the publisher

SUPPORT SOFTWARE

CAD LI VAJITTL L /AN

FOR USE WITH GE’S

MARK Ill TIMESHARING
SYSTEM SP54

Silnotics

SUPPORT SOFTWARE FOR USE WITH GE's SP54
MARK 11l TIMESHARING SYSTEM

1. SUMMARY

A series of programs is described that provide the micro-
processor application’s design engineer with on-line support
for the developmént of programs to be run on the Signetics
2650 microprocessor. These programs include a cross-
assembler, a cross-simulator, and two tape utility programs
that convert the object file produced by the assembler into
either a “hex’’ format, suitable for loading into system
memory by “PIPBUG,” or into a format suitable for
burning PROMs. The programs are accessed through a
communications terminal connected to General Electric’s
Mark [l Timesharing System via standard telephone lines.

2. USAGE OVERVIEW

The user creates the source file for his assembly language
program by using the editing facility or his program may be
punched onto cards and read into the system. Once the
source file resides in the system, the user executes the
assembler, which translates symbolic source statements into
machine language instructions, and generates both an
assembled listing of the source file and an object file. If the
assembler reports any errors in the source file, the user may
again invoke the editing facility to correct the errors. The
corrected source file is then resubmitted to the assembler.
Once the assembler reports no errors, the user may input
the object file to the simulator which simulates execution
of the program.

The simulator provides the following capabilities:

1) Establishes initial program conditions.
2) Monitors execution sequences.
3) Modifies the program until it operates as desired.

Once the program operates correctly, the user may repeat
the entire cycle: correct his source file, reassemble, and test
the new program using the simulator. When the program is
fully tested and debugged, it may be punched onto tape in
a format for loading into system memory and/or for
burning PROMs.

3. PROGRAM DESCRIPTIONS

The next few sections describe the available programs and
provide detailed instructions for using them. All available
usage options are included as reference information. A final
section, called “Operating Instructions,” provides step-

1

2650 MICROPROCESSOR
APPLICATIONS MEMO

by-step procedures for generating, editing, assembling,
simulating, and punching Signetics 2650 programs. These
procedures explain some of the more commonly used
features of both the General Electric Timesharing System
and the Signetics facilities and demonstrate how to use
them.

A. PIPHASM — SIGNETICS 2650 PIP ASSEMBLER (HEX
TAPE FORMAT)

PIPHASM supports the 2650 assembler language as speci-
fied in the basic manual set (2650 BM 1000). It outputs a
hexadecimal object module in a format acceptable to the
two tape-punching programs, PIPHTAP and PIPSTAP, and
to the simulator, PIPSIM.

To execute the assembler, enter the command:

/PIPHASM

The assembler will start executing and will request the
following information:

® The name of the input (source) file.

® The name assigned to the assembler-produced object
file. It is suggested that some naming convention be
adopted; e.g., always name the object file with the
first four letters from the name of the source file
followed by “.0OBJ".

® The width of your terminal carriage. Enter 0" if
your terminal carriage has 120 characters; otherwise,
enter 1",

To assemble your program, the assembler creates a scratch
file on your user ID. If the assembly runs to completion,
this file will be purged. But if the assembly is aborted, the
file may remain on your user ID. You may collect up to ten
of these scratch files before the assembler will be unable to
assemble because it cannot find a scratch file name. The
scratch file names that must be purged are referred to as:
A....00,A....01,...,A....09

B. SIGNETICS 2650 SIMULATOR

The 2650 simulator, a program written in FORTRAN |V,
simulates the execution of a 2650 program without using
the 2650 processor. The simulator executes a 2650 program
by maintaining its own internal FORTRAN storage registers
to describe the 2650 program, the microprocessor registers,
the ROM/RAM memory configuration, and the input data
to be read dynamically from 1/O devices. The user may

SIGNETICS SUPPORT SOFTWARE FOR USE WITH THE GE TIME SHARING SYSTEM = SP54

request traces of the processor status, dumps of the con-
tents of memory, and program timing statistics. Multiple
simulations of the same program with different parameters
may be executed during one simulation run.

The simulator requires as input both the program object
module produced by the 2650 assembler and a file of user
commands. It produces a listing of the user’'s commands,
executes the program, and prints (“‘displays’’) both static
and dynamic information as requested by the user’s com-
mands.

The Signetics Basic Manual Set (2650 BM 1000) contains
a description of the user commands and the general opera-
tion of the simulator.

To execute the simulator, enter the command:

/PIPSIM

The simulator starts executing and requests the following
information:

® The name of the object module produced by the
assembler for your program.
® The name of the file of simulator commands.

C. PAPER TAPE UTILITIES

The two paper tape utility programs, PIPHTAP and
PIPSTAP, complete the series of programs discussed in this
memo.

1) PIPHTAP

PIPHTAP punches the “hex’ object file onto tape in a
format acceptable as input to the 2650 Prototyping Card
(2650 PC 1001). Refer to Signetics Applications Memo
SS51 for the tape format specifications.

To execute PIPHTAP, enter the command:

/PIPHTAP

PIPHTAP responds with a request for the name of your
object (input) file; it then requests that the punch be
turned on and that the carriage return key be depressed.
PIPHTAP punches about 50 frames of leader before it
punches the object module. When the system responds
with “READY," turn the punch off.

2) PIPSTAP

PIPSTAP punches the ‘hex’’ object file onto tape in a form
suitable for burning a PROM. To execute PIPSTAP, enter
the following command:

/PIPSTAP

PIPSTAP responds with a request for the following infor-
mation:

® The name of the object file.

® The value (two hexadecimal digits) representing the
unburned state of your PROM.

® The size in bytes (four decimal digits) of the PROMs
to be burned.

® Up to eight pairs of START/END addresses (four
hexadecimal digits). Each address pair identifies an
area of code in the object module.

NOTE: All numbers entered must contain leading zeros;
e.g., when entering the size of a PROM as 256, you must
enter 0256.

A START address larger than 7FFF, e.g., 8000, terminates
the input mode.

Once the input mode is terminated, PIPSTAP requests
that the punch be turned on. It then punches and prints
a record for each PROM specified.

START/END addresses are rounded down/up to the limits
of the affected PROM. Thus if:

INITIAL PROM VALUE = FF,

PROM SIZE = 0256,

START ADDR = 0040
and

END ADDR = 0240,

PIPSTAP punches three records: 0000 - OOFF, 0100 -
O1FF, and 0200 - 02FF. Each of the records is preceded
by its initial address (0000, 0100, 0200) punched into the
tape so that it is visible. This enables the tape to be
separated into individual strips for each PROM. The areas
0000 - 003F and 0241 - 02FF are filled with FFs.

Each record is punched in exactly the order in which its
START/END address was entered so that multiple records
may be punched for the same PROM. When the system
types “"READY,” turn the punch off.

4. OPERATING INSTRUCTIONS

This section provides a synopsis of operating instructions
for using the GE Mark Il Timesharing Service to generate,
edit, assemble, simulate, and punch Signetics 2650 pro-
grams. For more detailed information on the capabilities of
the GE Mark 11l Timesharing Service, refer to the following
manuals available from General Electric’s Information
Services Business Division: !

1) Command System — Mark 11l Foreground Reference
Manual No. 35601.01J. SRR

2) Editing Commands — Mark |1l Foreground Reference
Manual No. 3400.01F.

When using high-speed terminais (120 cps and up) or in
the event of any difficulty, contact your local General

2

SIGNETICS SUPPORT SOFTWARE FOR USE WITH THE GE TIME SHARING SYSTEM = SP54

Electric Sales Office. A list of General Electric Sales
Offices is provided at the end of this document.

A. LOGGING IN

® Set the terminal to "LINE" mode.

® Select the half-duplex mode, using the HALF/FULL
duplex switch (if necessary).

® \When you hear the high-pitched tone (indicating that
you have established communication with the com-
puter), place the telephone receiver in the modem
coupler.

NOTE: In the following examples data typed by the user is
underlined to distinguish it from data printed by the com-
puter.

Log in as follows
H carriage return

> the carriage return key terminates all input lines.
Some General Electric personnel recommend that four Hs,
HHHH, be entered instead of one The timesharing system
determines the speed of your terminal from the speed at
which these characters are received

The computer will respond to your H carriage return entry
with

U=

At this point enter your user ID (3 alphabetic characters
and 5 numeric characters) and press the carriage return:

U#= AAANNNNN

The system responds

PASSWORD
}:8:9:9:9:9:9.1

providing a blocked-out area in which you may enter your
password. Type the password on top of the blocked-out
area and press the carriage return. At this point the system
may send an informative message to your terminal. Some
user IDs are equipped with a short log-on sequence. If this
is true, the system responds with

READY
If this is not true, the system responds with
iD:
This is a request for accounting information. If you do not

wish to enter any accounting information, simply press the
carriage return:

ID: carriage return

The computer will respond with:

SYSTEM:

Specify FORTRAN IV
SYSTEM: FIV

since both the assembler and the simulator are written in
FORTRAN 1V. The system will respond with:

NEW OR OLD

This is the same as the READY message. The system is
now ready to perform any task you request.

B. ERROR RECOVERY

Prior to issuing any commands, it is essential to know how
to delete an unwanted command.

® Character Delete: To delete the last character typed,
hold down the shift key and depress zero (0) (ASCIl
decimal code 95). The ASCIlI decimal code is
included since the actual key used may differ from
terminal to terminal.

Line Delete To abort a line before the carriage
return key 1s depressed, hold down the control key
and depress X'’ (ASCII decimal code 24).

® Break To abort a command while 1t 1s being exe-
cuted (e.g., stop printing a long file), depress the
BREAK or interrupt key twice.

C. CREATING AND/OR EDITING A SOURCE FILE

Both the assembler and the simulator expect you to iden-
tify a source file that you have created. The assembler
expects the 2650 program source file and the simulator
expects the user’s command source file. To create the
source file, the name of the file must be specified:

NEW FILENAME

This command assigns the name, FILENAME, to the
temporary working file. At this point, the file is empty.
Notice that the file name, FILENAME, is eight characters
jong. We recommend that ihe first four characters be
meaningful. Acceptable file names are 1-to-8 characters
long using only the letters A through Z, numerals O through
9, and the period (.).

At this point enter each line of the source file into the
temporary buffer:

100 *PROCESSOR SYMBOLS

110 RO EQU 0

120 R3 EQU 3

130 *PROGRAM VARIABLE STORAGE

140 ORG H*100’

150 TLEN EQU 3 TABLE LENGTH
160 TBLA RES TLEN TABLE A
170 TBLB RES TLEN TABLE B

180 *MOVE DATA IN TBLA TO TBLB. TLEN MUST
185 *BE LESS THAN 256 BYTES

SIGNETICS SUPPORT SOFTWARE FOR USE WITH THE GE TIME SHARING SYSTEM = SP54

190 ORG 0

200 LODI,R3 TLEN
210 LOOP LODA,RO TBA-1,R3
220 STRA,RO TBB-1,R3
226 NOP

228 NOP

230 HALT

240 END

Note that each line starts with a line number followed by a
space and then the source data itself. Lines may be entered
out of order, since the system will sort the source lines by
line number. Once the data is entered, this temporary file
must be saved in permanent storage using the following
command:

SAVE

The system responds with a READY message, and the
temporary file remains intact.

To list the contents of your temporary file, type:

LIST
The system responds by printing your file.

Should you want to change your source file, bear in mind
that the only file that can be modified (or edited) is the

Arar Loy £i
temporary working file. At this point your source program

still resides in the working file; however, if your source
program resided in a permanent rather than a working file,
enter the following command:

OLD FILENAME

The OLD command reads the contents of the permanent
file, named FILENAME, into the temporary file and assigns
the name, FILENAME, to the temporary file.

The source file is now ready for editing.

To add a line, simply type the line with a new line number:

225 BDRR,R1 LOOP

To change a line, retype the line using the same line num-
. ber:

225 BDRR,R3 LOOP

To change all occurrences of the letters “TB” to “TBL"
from lines 210 through line 220, enter the following
command:

CHAVC 210/TB/TBL/220
This command changes the following two source lines:

210 LODA,RO TBLA-1,R3
220 STRA,RO TBLB-1,R3
READY

Lines 226 and 228 may be deleted with either one of the
following two commands:

EDI DEL 226-228

or

EDI DEL 226,228
The first command deletes lines 226 through 228, while
the second command deletes lines 226 and 228.

List your temporary file and verify all changes:
LIST
The system prints your file here and then prints:

READY

Save your file in the permanent file that was created with
the SAVE command:

REPLACE
READY

The SAVE command creates a permanent file with the
same name as the one assigned to the temporary file. The
REPLACE command takes the content of the temporary
file and stores it in the already existing permanent file that
has the same file name.

NOTE: Most system cammands may be shortened to the
first three letters, e.g., REPLACE = REP.

D. ASSEMBLING THE PROGRAM TO CREATE AN
OBJECT MODULE

The editing facility assumes that each line of your source
program has a line number at the beginning. Since neither
the assembler nor the simulator will accept these line num-
bers, the following command must be executed to remove
them:

EDI DES FILENAME
READY

The assembler is now ready to be executed. Enter the
command:

/PIPHASM

The assembler responds with a request for the name of your
source program:
INPUT FILENAME? FILENAME

The assembler then requests the name of your object moduie:

OBJECT FILENAME? FILE.OBJ

This is a file that the assembler generates. Your file must
be assigned a narne. One useful technique is to use the
first four letters of the name of the source program with
.OBJ concatenated onto the end.

4

SIGNETICS SUPPORT SOFTWARE FOR USE WITH THE GE TIME SHARING SYSTEM = SP54

The computer prints:

TYPE 'O’ FOR WIDE CARRIAGE or
TYPE ‘1" FOR NARROW CARRIAGE 1

If your terminal prints- 120 characters per line, type ‘O’.
If your terminal prints less than 120 characters per line,
type ‘1'.

The assembler responds by printing your listing. When the
listing is complete, the system prints:

READY

Now that your listing is complete, you may restore the line
numbers to your file by entering the following command.
This is only necessary if you plan to edit your file.

EDI RES FILENAME

E. LOGGING OFF

Log off the GE Timesharing System and review your pro-
gram for logical and syntactical errors.

BYE
00024.11 CRU 0000.41 TCH 0009.74 KC
OFF AT 16:20PDT 10/15/75

F. USING THE SIMULATOR TO TEST AND DEBUG
YOUR PROGRAM

1. Log onto the system using the procedures outlined in
step A.

2. Create a file containing the simulator commands. As
with the object module, you could name this file by
concatenating .TST onto the first four letters of FILE-
NAME.

NEW FILE.TST

READY

100 PATCH 100,01 101,02 103,03
120 DUMP A, 100 - 105

130 FEND

SAVE

3. Request a simulator run.

First, you must remove the line numbers from the
command file:

EDI DES FILE.TST.
READY

REP

READY

Then execute the simulator by entering the following
command:

/PIPSIM

The simulator responds with a request for the following
information:

OBJECT MODULE NAME? FILE.OBJ

Enter the name of the object module generated by the
assembler.

COMMAND FILE NAME? FILE.TST

Enter the name of the simulator command file.

The simulator prints its output at this time.

Log off the General Electric Timesharing system and
review the simulator listing to determine if any program
corrections are required.

BYE

G. PUNCHING A PAPER TAPE FOR DEBUGGING ON
THE PROTOTYPE CARD SYSTEM

Check to see that the punch is off, and log onto the system
using the procedures outlined in step A.

When the system responds with
READY

enter the command:
/PIPHTAP

PIPHTAP responds with a request for the name of your
input file:

ENTER INPUT FILE NAME? FILE.OBJ

When the input file name is entered, PIPHTAP prints the
following instructional message:

TURN ON PUNCH AND HIT CARRIAGE RETURN.

When the carriage return key is depressed, PIPHTAP punches
50 frames of leader and then punches your object module.
The object module is also printed.

When punching is complete, the system responds with
READY

Turn the punch off, and log off the system.

H. PUNCHING A PAPER TAPE FOR BURNING PROMS
Check to see that the punch is off, and log onto the system
using the procedures outlined in step A.
When the system responds with

READY
enter the command:

/PIPSTAP

SIGNETICS SUPPORT SOFTWARE FOR USE WITH THE GE TIME SHARING SYSTEM = SP54

PIPSTAP responds with a request for the name of your
input file:
ENTER OBJECT FILE NAME? FILE.OBJ

PIPSTAP then requests that you enter the unburned state
of your PROM. (Since PIPSTAP punches data into each
location of the PROM, PIPSTAP requires a value that can
be used for the other locations):

INITIAL PROM VALUE? 00

This value must be entered as two hexadecimal digits.

PIPSTAP then asks for the size of your PROM (in bytes)
which must be entered in four decimal digits. The maximum
allowable size is 1024.

PROM SIZE? 0256

PIPSTAP requests both a START and an END address for
the code you want punched. Use four hexadecimal digits
for each address as shown below. Don’t forget the leading
zeros.

START ADDR? 0000
END ADDR? 000A

PIPSTAP will request up to eight pairs of START/END
addresses. Enter a number larger than 7FFF, e.g., 8000,
when you have completely described the object module:

START ADDR? 8000
PIPSTAP prints the following message:

TURN ON PUNCH AND HIT CARRIAGE RETURN

When you press
Carriage Return

PIPSTAP punches 50 frames of leader followed by the
PROM record specified by your START and END addresses.
The START address of your PROM, 0000, is punched into
the tape so that it visible. Part of the object module will
be printed.

When punching is complete, the system responds with:
READY

Turn the punch off, and log off the system.

5. GENERAL ELECTRIC SALES OFFICES

CHICAGO
233 South Wacker Drive
Chicago, lllinois 60666
(312) 781-7840

DETROIT
22150 Greenfield Road
Oak Park, Michigan 48237
(313) 968-8100

MINNEAPOLIS
1500 Lilac Drive, South
Minneapolis, Minnesota 55416
(612) 546-0990

MILWAUKEE
615 East Michigan Street
Milwaukee, Wisconsin 53202
(414) 271-7900

CINCINNATI
580 Walnut Street
Cincinnati, Ohio 45202
(513) 559-3660

LOUISVILLE
Citizens Plaza
Louisville, Kentucky 40202
(502) 452-4211

INDIANAPOLIS
Castleview Building
8000 Knue Road
Indianapolis, Indiana 46250
(317) 842-0100

FT. WAYNE
Lakeside |l Building
2250 Lake Avenue
Ft. Wayne, Indiana 46805
(219) 423-1406

CLEVELAND
1000 Lakeside Avenue, N.E.
Cleveland, Ohio 44114
(216) 523-6251

coLumMBUS
Harrington Building
90 E. Wilson Bridge Road
Worthington, Ohio 43085
(614) 438-2170

PITTSBURGH
Two Gateway Center
Pittsburgh, Pennsylvania 15222
(412) 566-4330

NEW YORK FINANCIAL
Mc-Graw Hill Building
1221 Avenue of the Americas
New York, New York 10020
(212) 997-0317

NEW YORK INDUSTRIAL
Mc-Graw Hill Building
1221 Avenue of the Americas
New York, New York 10020
(212) 997-0351

LONG ISLAND
1 Huntington Quadrangle
Huntington Station
L. I. New York 11746
(516) 694-7636

EAST ORANGE TELEPHONE BRANCH
33 Evergreen Place
East Orange, New Jersey 07018
(201) 672-0700

PHILADELPHIA
1700 Market Street
Philadelphia, Pennsylvania 19103
(215) 864-7474

HARRISBURG b
3800 Market Street
Camp Hill, Pennsylvania 17011
(717) 761-1481

SCHENECTADY
650 Granklin Street, 3rd Floor
Schenectady, New York 12305
(5618) 372-6436

PITTSFIELD
395 Main Street
Dalton, Massachusetts
(413) 494-4308

BOSTON
98 Galen Street
Watertown, Massachusetts 02172
(617) 926-2911

BUFFALO
3980 Sheridan Drive
Buffalo, New York 14226
(716) 839-5222

SYRACUSE
202 Twin Oaks Drive
Syracuse, New York 13206
(315) 456-1995

ROCHESTER
One Marine Midland Plaza
Rochester, New York 14604
(716) 232-6523

STAMFORD
2777 Summer Street
Stamford, Connecticut 05905
(203) 359-2985

HARTFORD
111 Founders Plaza
East Hartford, Ct. 06108
(203) 289-7941

LOS ANGELES NORTH
3550 Wilshire Blvd.
Los Angeles, California 90010
(213) 388-9626

SAN FRANCISCO TELCO BRANCH
One Embarcadero Center
San Francisco, California 94111
(415) 781-11565

SEATTLE
1218 Bank of California Center
Seattle, Washington 98164
(206) 575-2990

PORTLAND
2154 N. E. Broadway
Portland, Oregon 97232
(503) 288-6916

SAN FRANCISCO
One Embarcadero Center
San Francisco, California 94111
(415) 989-1100

PALO ALTO BRANCH
1120 San Antonio Road
Palo Alto, California 94303
(415) 969-3772

LOS ANGELES SOUTH
3550 Wilshire Boulevard
Los Angeles, California 90010
(213) 385-9411

ATLANTA
2200 Century Parkway, N. E.
Atlanta, Georgia 30345
(404) 325-9889

BIRMINGHAM
300 Office Park Drive
Birmingham, Alabama 35223
(205) 879-1298

NASHVILLE
293 Plus Park Boulevard
Nashville, Tennessee 37217

(615) 259-4570

CHARLOTTE
301 S. McDowel Street
Charlotte, North Carolina 28204
(704) 374-1783

GREENSBORO
604 Green Valley Road
Greensboro, N. C. 27408
(919) 292-7230

GREENVILLE
252 South Pleasantburg Drive
Greenville, S. C. 29607
(803) 233-5335

MIAMI
8410 N.W. 53rd Terrace
Miami, Florida 33166
(305) 592-7610
TAMPA
5420 Bay Center Drive
Tampa, Florida 33609
(813) 877-8294

BETHESDA
4720 Montgomery Lane
Bethesda, Maryland 20014
(301) 654-7061

BALTIMORE
25 South Charles Street
Baltimore, Maryland 21201
(301) 539-6770

© NV Philips’ Gloellampentabrieken

RICHMOND
Willow Oaks Office Building
6767 Forest Hill Avenue
Richmond, Virginia 23235
(804) 320-0192

WASHINGTON
777 - 14th Street, N.W.
Washington, D.C. 20005
(202) 628-4000

ST. LOUIS
1015 Locust Street
St. Louis, Missouri 63101
(314) 342-7780

KANSAS CITY
911 Commerce Tower
Kansas City, Missouri 64199
(816) 842-9745

DALLAS
1341 West Mockingbird Lane
917 East Tower
Dallas, Texas 75247
(214) 631-0910

SHREVEPORT
208-A Beck Building
Shreveport, Louisiana 71102
(318) 425-2476

HOUSTON
601 Jefferson
Houston, Texas 77002
(713) 224-8294

DENVER
201 University Boulevard
Denver, Colorado 80206
(303) 320-3174

PHOENIX
3225 North Central Avenue
Phoenix, Arizona 85004
(602) 264-7881

TULSA
1900 Fourth National Bank Building
Tulsa, Oklahoma 74119
(918) 582-0800

OKLAHOMA CITY
5700 North Portland
Oklahoma City, Oklahoma 73112
(405) 947-2376

This information is furnished for guidance. and with no guarantees as to its accuracy or completeness; its publication conveys no Il;ence under any patent or other right, nor
does the publisher assume liability for any consequence of its use. specifications and availability of goods mentioned in it are subject to change without notice. it is not to be
reproduced In any way. 1N whole or in part. without the written consent of the publisher

Q2009 N0 RAPR1

ABSOLUTE
OBJECT
FORMAT

SShH1

(REVISION NO. 1)

sinnotics

ABSOLUTE OBJECT FORMAT

W)

REVISION NO. 1

INTRODUCTION

The format for absolute code produced for the 2650 is
described in this application note.

The absolute object code is formatted into blocks. The
first character of every block is a colon. Inside of a block,
all the characters are hexadecimal, i.e., 0 to 9 or A to F,
inclusive. Only non-printing ASCII control characters may
occur within an interblock gap. These are the characters in
the first two columns (columns O and 1) of the ASCII
standard code table. A CR/LF is used within the interblock
gap to reset the TTY or terminal after each block.

Each block is independent. For example, paper tape can be
positioned prior to any block and a load started. The
loading of absolute object code will be halted by:

A BCC error on the address + count fields

A BCC error on the data field

An incorrect block length

A non-hex character within the block

The block length field contains the number of bytes of
actual data which is half the number of hex characters in
the data field. Whiie the size of the data field can range from
2 to 510 characters, a standard size of 60 characters has
been established so that the tape may be easily generated
and read on a variety of terminals and systems. A block
length of zero indicates an End of File (EOF) block. The
address field of an EOF block contains the start address of
the loaded program.

The Block Control Character is 8 bits formed from the
actual bytes and not from the ASCII characters. The bytes

EXAMPLE OF OBJECT FORMAT

2650 MICROPROCESSOR
APPLICATIONS MEMO

are in turn exclusive or'ed to the BCC byte, and then the
BCC byte is left rotated one bit. It appears as two hex
characters. Both the address and count fields and the data
field are followed by a BCC character pair. The BCC
prevents storing data at an invalid memory address or
storing bad data into memory.

EXAMPLE: An object tape that loads ten bytes starting
at location 500
:05000A3C0455B024FFF01F05040030
:000000

FORMAT

1. Interblock gap of any non-printing characters including
spaces

2. Start of block character;
a colon

3. Address field;
four hex characters

4. Count field;
two hex characters in range 0 to 1E

5. BCC for address and count fields;
two hex characters

6. Data field;
twice the value in the count field which is the number
of memory locations loaded by the current block

7. BCC for the data field;
two hex characters

:05000A 3C0455B024FFFO1F 05040030

2 — Start of block character (colon)

3 — Starting address for block (H'0500')

4 — Number of bytes in block (H'0A" = 10)
5 — BCC byte for fields 3 and 4 (H'3C)

6 — Data, two characters per byte

7 — BCC byte for field 6 (H'30’)

© N.V. Philips’ Gloeilampentabrieken

This information is turnished tor guidance. and with no guarantees as to its accuracy or completeness; its publication conveys no licence under any patent or other right, nor
does the publisher assume liability for any consequence of its use. specifications and availability of goods mentioned in it are subject to change without notice; it is not to be

reproduced in any way. in whole or in part, without the written consent ot the publisher

PAAINLS B A e S o e

LOW COST CLOCK GENERATOR CIRCUITS MP52

SilneLics

LOW COST CLOCK GENERATOR CIRCUITS

MP52

GENERAL

The clock circuit requirements for microprocessors range
from tightly specified, two-phase, non-overlapping types
to simple single-phase, TTL compatible types. To lower
system cost, the Signetics 2650 Microprocessor was
designed to operate with a single-phase, TTL-level clock
without any special clock driver circuitry. The clock input
specifications for the 2650 are summarized in Table |.

This Applications Memo describes several clock generator
circuits that may be used with the 2650. These circuits
use standard TTL logic elements (7400 series). They
include RC, LC, and crystal oscillator type circuits.

The stability required by the user’s application will deter-
mine the type of clock generator that should be used.
Tables showing the measured frequencies at several temper-
atures and supply voltages are presented.

RC OSCILLATOR

A circuit diagram of an RC oscillator is given in Figure 1.

2650 MICROPROCESSOR
APPLICATIONS MEMO

The first inverter is biased into its linear region by resis-
tor R. The positive feedback capacitor (C) from node (B)
to node (A) causes the circuit to oscillate. The third inverter
acts as a buffer to drive the clock input of the 2650. The
oscillation period is approximately equal to 3 RC. Measure-
ments taken on this circuit showed a 10 ns rise time and a
7 ns fall time.

Table Il shows how the frequency of the RC oscillator is
affected by variations in Ve and ambient temperature.

1.6 nF (1.5 nF parallel with 0.1 nF)

1]
ar
[
220
—WA—
R CLOCK OUTPUT
f=1MHz

D e

(Standard 7400 Inverters)

FIGURE 1. RC Clock Generator

TABLE |
2650 CLOCK INPUT SPECIFICATIONS

SYMBOL PARAMETER TEST CONDITIONS VIN. LlM'TSMAX- UNIT
L Input Load Current VN = 0 to 5.25V 10 MA
ViL Input Low Voltage -0.6 0.8 \
Viy Input High Voltage 2.2 Vee \%
CiNn Input Capacitance ViN =0V 10 pF
tCcH Clock High Phase 400 10,000 nsec
tcL Clock Low Phase 400 o0 nsec
tcp . Clock Period 800 o nsec
t, Clock Rise Time 20 nsec
t Clock Fall Time 20 nsec

Timing Reference = 1.5V
Ta = 0°t070°C

Vcc = BV * 5%

SIGNETICS 2650 CLOCK GENERATOR CIRCUITS = MP52

TABLE 11
RC OSCILLATOR STABILITY

Ambient Temperature (T)

e %" 7' (Vg = camstant)
Vee = 4.75V 1044.50 KHz 1028.95 KHz 998.50 KHz +1.561%, -2.96%
Ve = 5.0V 1043.20 KHz 1023.65 KHz 990.45 KHz +1.91%, -3.24%
Ve = 5.25V 1038.80 KHz 1013.63 KHz 979.65 KHz +2.48%, -3.35%
Stabilityy ™~ +0.12% +0.52% +0.20%
(T A = constant) -0.42% -0.98% -1.1%

*Stability with respect to T, = 25°C
“'Stabilityv with respect to Voo = 5.0V

A second type of RC oscillator uses a monostable multi-
vibrator circuit (N74123) as illustrated in Figure 2. The
pulse width of each monostable is determined by the
external resistor and capacitor:

(025 1) e (22

where
Rext is in K&
Cext isin pF,
and
tyy isin ns.

In this circuit, the oscillation is caused by the triggering of
each monostable by the other one. The oscillation fre-
quency can be derived from the following equation:

1

where:

tyy1 is the pulse width of the first monostable, and
tw2 is the pulse width of the second monostable.

Measurements on frequency stability with a load of one
TTL input are presented in Table II1.

cext Rext ngt Rext
I—H-T—M/v—ovcc [—-HT——JV\M—O Vee
Cext Cext Cext Cext
ext Rext Rext = 12K
a b Cext = 1200F
5 1D
Vec O— B
a a OUTPUT
CLR CLR
N74123(%) ? N74123(‘/2)?

fosc= ————
twi ttw2, FIGURE 2. RC Clock Generator with Monostable Circuit N74123
TABLE Il
MONOSTABLE MULTIVIBRATOR OSCILLATOR
STABILITY
Ambient Temperature (T 5)
° ° ° Stability*
ocC 25°C 0c (V¢e = constant)
VCC =4.75V 1063.65 KHz 1046.72 KHz 1041.16 KHz +1.62%, -0.53%
VCC =5.0V 1063.80 KHz 1042.83 KHz 1032.63 KHz +2.01%, -0.98%
Vcc = 5.25V 1063.80 KHz 1039.95 KHz 1024.02 KHz +2.29%, -1.53%
Stabilityv** +0.00% +0.276% +0.826%
(T = constant) -0.014% ~-0.373% -0.833%

*Stability with respectto T = 25°C
* *Stabilityy, with respect to Vo = 5.0V

SIGNETICS 2650 CLOCK GENERATOR CIRCUITS = MP52

The observed rise and fall times at the output of this
circuit were 10 ns and 8 ns, respectively. The stability of
this circuit reflected a slight improvement over the stability
of the RC oscillator shown in Figure 1.

LC OSCILLATOR

Figure 3 shows an LC oscillator circuit using standard TTL
inverters.

82
AM—
L CLOCK OUTPUT
10uH = 1MHz

c (o (Standard 7400 Inverters)

4 3nF
7 "FI I 2.7 nF parallel with 0.27 nF

FIGURE 3. LC Clock Generator

The first inverter combined with the passive components
forms a Colpitts oscillator. The resistor provides a feedback
path for the first inverter and forces it into its linear region.
The second inverter ‘‘squares’’ the oscillator signal and
provides an output buffer. The oscillator frequency can be
derived from the following equation:

fosc =
2n\/(L) (c1) - (C2)
(C1)+ (C2)
Measurements from the circuit in Figure 3 showed a 10 ns

rise time and a 7 ns fall time. Measurements on frequency
stability are provided in Table IV.

CRYSTAL OSCILLATORS

In 2650 Microprocessor applications requiring a highly
stable clock, a crystal oscillator may be required. Some
examples of crystal oscillator circuits are shown in Figures
4 and 5. The circuit shown in Figure 4 uses a 1.025 MHz
crystal while the circuit shown in Figure 5 uses a low cost
4.433618 MHz crystal commonly found in European
manufactured color TV sets. The output of the oscillator
is divided by four to obtain a clock frequency of 1.1 MHz.

1.025 MHz Crystal

fif

820 820

CLOCK OUTPUT

[f = 1.025 MHz

47 pF

10 nF

(7404 Inverters)

FIGURE 4. Clock Generator Using a Non-TV Standard Crystal

4.433618 MHz Crystal

ui
cLock
ouTPUT

220
f=1.108 MHz
D Q D Q -0
c ‘— c

(7404 Inverters)

1%N7474 %N7474

FIGURE 5. Low Cost Color TV Crystal Clock Generator

TABLE IV

LC OSCILLATOR STABILITY
Ambient Temperature (T 4)

e
0°c 25°C 70oc Stability

(V¢ = constant)
Vcc =4.75V 1027.14 KHz 1017.75 KHz 1004.46 KHz +0.92%, -1.31%
Vee = 5.0V 1026.62 KHz 1016.99 KHz 1004.11 KHz +0.95%, -1.26%
Vee = 5.25V 1025.82 KHz 1016.30 KHz 1003.73 KHz +0.94%, -1.24%
Stability ™ * +0.05% +0.07% +0.03%
(T 5 = constant) -0.08% -0.07% -0.04%

*Stability ; with respect to T p = 25°C
* *Stabilityv with respect to V. = 5.0V

SIGNETICS 2650 CLOCK GENERATOR CIRCUITS = MP52

The circuit of Figure 5 can also be used with a 3.56795 MHz SUMMARY
United States color TV crystal to provide an output fre-

quency of 895 KHz. Table V |s.a summ.ary of the stablh.ty m.easure'mer.)ts made
for the oscillator circuits described in this application note.
The stability of the crystal oscillator circuits is mainly As the table shows, the crystal circuits exhibit great sta-

determined by the stability of the crystal used. The circuits bility relative to the RC and LC oscillators, but they suffer
shown in Figures 4 and 5 had a stability of 0.003% over the the added expense of the crystal. Any of the oscillator

0°C to 70°C temperature range and 0.002% over a variation circuits shown in this application note can be used to drive
of power supply voltage from 4.75V to 5.25V. the 2650 microprocessor clock input.
TABLE V
SUMMARY OF OSCILLATOR STABILITY
STABILITY
CIRCUIT (4.75V to 5.25V) (0°C to 70°C)
YP
TYPE 0°c 25°C 70°C 4.75V 5.0V 5.25V
RC +0.12% +0.52% +0.2% +1.51% +1.91% +2.48%
-0.42% -0.98% -1.1% -2.96% ~-3.24% -3.35%
RC MONO- +0.00% +0.276% +0.826% +1.62% +2.01% +2.29%
STABLE -0.014% -0.373% -0.833% -0.53% -0.98% -1.53%
LC +0.05% +0.07% +0.03% +0.92% +0.95% +0.94%
-0.08% -0.07% -0.04% -1.31% -1.26% -1.24%
CRYSTAL +0.0003% -0.0001% +0.0002% +0.001% +0.0001% +0.0004%

AS50
AS51
AS52
ASS53
AS54
SP50

SP51
SP52

SP53
SP54

S$S50
S$S51
MP51
MP52

Signetics 2650 Microprocessor application memos currently available:

Serial Input/Output

Bit and Byte Testing Procedures

General Delay Routines

Binary Arithmetic Routines

Conversion Routines

2650 Evaluation Printed Circuit Board Level System
(PC1001)

2650 Demo Systems

Support Software for use with the NCSS Timesharing
System

Simulator, Version 1.2

Support Software for use with the General Electric Mark 111
Timesharing System

PIPBUG

Absolute Object Format (Revision 1)

2650 Initialization

Low Cost Clock Generator Circuits

© N.V. Philips' Gloeilampentabrieken

This.information is furnished for guidance. and with no guarantees as to its accuracy or completeness; its publication conveys no licence under any patent or other right, nor
does the publisher assume liability for any consequence of its use: specifications and availability of goods mentioned in it are subject to change without notice; it is not to be
reproduced in any way, in whole or in part. without the written consent of the publisher

0399 509 54461

priies| Electronic pH I LI ps
% components

and materials

ADDRESS AND DATA BUS

INTERFACING TECHNIQUES MP53

AN APPLICATION MEMO

S

e
e

sijnotics

cinotics

ADDRESS AND DATA BUS
INTERFACING TECHNIQUES MP53

1. INTRODUCTION

The Signetics 2650 Microprocessor has a 15-bit address bus
and an 8-bit bi-directional data bus. The address bus allows
a maximum of 32K words of memory. The drive capability
of the 2650 address and data busses limits the number of
chips that can be connected to the system. If the system
load exceeds the 2650 drive capability, buffer circuits must
be added.

This applications memo provides several examples of inter-
facing the 2650 address and data busses with ROMs and
RAMs such as the 2608, 2606, and 2602. Examples are in-
cluded for both small and large systems.

2. SMALL SYSTEMS WITHOUT BUFFERING
Address Bus Loading

All 2650 output signals are TTL-compatible. Each output
can source 100 uA at 2.4V minimum and sink 1.6 mA at
0.45V maximum. The 2650 inputs require a load current of
only 10 uA regardless of the logic level on the input.

The 2608, 2606, 2604, and 2602 MOS ROMs and RAMs
all require an input current of 10 uA. This means that, based
on d-c loading considerations, a maximum of ten inputs of
this type can be driven from one 2650 address output with-
out the use of buffering.

TABLE |
TYPICAL 2650 MEMORY CONFIGURATIONS
WITHOUT BUFFERING

Number of Chips Connected

to One Address Output Memory Capacity

Eight 2606 RAMs (256 x 4)
Two 2608 ROMs (1024 x 8)

1K byte RAM;
2K bytes ROM

Eight 2602 RAMs (1024 x 1)
Two 2608 ROMs (1024 x 8)

1K byte RAM;
2K bytes ROM

If bipolar PROMs such as the 82S114 or 82S115 are used,
fewer chips can be connected because of higher input current
requirements.

2650 MICROPROCESSOR
APPLICATIONS MEMO

Data Bus Loading with the 2606 RAM (256 x 4)

The bi-directional data bus of the 2606 RAM (256 x 4)
makes this device ideally suited for use with the 2650 Micro-
processor. The maximum number of input/output connec-
tions can be calculated from the diagram shown in Figure 1.

2606 2606 R _ 2606
RAM RAM cee RAM
Dout DouT DOUT
gy 1BL2606 I1BL2606 1BL2606
2650 0 l (1004A) (1004A) (1004A)
o T IBH2606 ?lBHZBOG T'BHZGOG
(10uA) (10uA) (10uA)
DBUS eee
— J

10L2650 (1.6mA)
-~ n connections

0
10H2650 (100uA)

FIGURE 1 The 2606 RAM with the 2650

In Figure 1, n 2606 memory chips are driven by the 2650.
The 2606 memory chips load the bus with a leakage current
of 100 uA in the logic ZERO state and with 10 A in the
logic ONE state. When the data bus is driven to a logic "'1"
the required source current of the 2650 output will be:

IO0H2650 = (n) * IBH2606
=(n) + (10 uA)

where:

IBH2606 = output logic ONE leakage current of
the 2606 RAM;

ADDRESS AND DATA BUS INTERFACING TECHNIQUES = MP53

and
I0H2650 = output logic ONE drive current of the
2650.

From this equation we calculate npax:

o _'OH2650 max _ 100kA _
max 10 uA 10 uA

10

In the logic ZERO state, the output current required of the
2650 is:

loL2650 = (n) - IBL2606
=(10) - (100 uA) = 1000 uA

where:

IBL2606 = output logic ZERO leakage current of
the 2606 RAM;
and
loL2650 = output logic ZERO drive current of
the 2650.

This is less than the maximum drive capability of 1.6 mA
for the 2650.

When the 2606 drives the data bus, the logic ONE loading
is the same as that seen by a 2650 driving a data bus (pre-
viously described as |0H2650). The logic ZERO load on
the 2606 chip is:

loL2606 = (n-1) IBL2606 * LOL2650
= [(9) * (100 pA)] + 10 pA

=910 uA
where:
ILOL2650 = output logic ZERO leakage current
of the 2650.

This is below the 1.9 mA sink current capability of the 2606.
It can thus be concluded that when using MOS RAMs or
ROMs with the 2650, the number n is normally limited by
the maximum output logic ONE current of the driving
device.

Data Bus Loading with the 2602 RAM

In contrast to the 2606, the 2602 RAM (1024 x 1) has
separate input and output data paths. The data output for
this device is switched to tri-state with the chip enable in-
put. For bi-directional data transfers, however, the data out-
put signal must be disabled during the write mode to avoid
a drive conflict between the 2650 and the RAM. This is
done by inserting a tri-state buffer into the data-out line as
shown in Figure 2. The buffers are only enabled when
QOPREQ is 3 “HIGH"”, R/W (the READ/WRITE control line
from the 2650) is a “‘LOW’’, and the RAM is selected for
access.

ADDRESS |

5 Enabled Enabled
ABUS 10 £ DECODE e
A§U§ 14 § 2602 —eee—| 2602
RAM RAM
OPREQ #0 #7

! E SELECT
I > r} Din DouTt DiN DouT
M/I0 |

r-----7 A
DBUSO t +
M) |
° | T
o | |
° Il
. H
M .)
L]
. . M
L] .
DBUS? } t
! |
|
|
t
|
| |
2650 Lo e — = J

8 Tri-State Buffers (1 + 1/3 8T95)

FIGURE 2 The 2602 RAM with the 2650
A-C Loading Considerations

The 2650 address bus, data bus, and control lines will drive
a 100 pF capacitive load and one standard TTL load. The
capacitive loading calculations must include the 2650 out-
put capacitance and the external wiring capacitance. The
2606 presents a 10 pF capacitive load to the data bus and a
7 pF load to all other inputs. The number (n) of 2606
RAMs that can be driven directly by the 2650 is given by
the following equations:

CLOAD = CouT2650 + CWIRING + [(nd) - CouT2606!
or

CLOAD = CouT2650 + CWIRING + [(na) © CiN2606]
where:

CouT2650 = Output capacitance for the 2650

=10 pF
CWIRING = Wiring capacitance
=10 pF
CiN2606 = Load capacitance for the 2606 ad-
dress bus
=7 pF
COoUT2606 = Load capacitance for the 2606 data
bus
=10 pF
CLoAD =100 pF
therefore:
Na - 80 pF == 11 address bus loads
7 pF
nd - 80 pF = 8 data bus loads
10 pF

The 2606 is a 256-location by 4-bit RAM and requires two
chips for each 256 bytes. As seen from the above calcula-

ADDRESS AND DATA BUS INTERFACING TECHNIQUES = MP53

tions, the 2650 will drive eleven 2606s (ng), or five pairs
(na/2) of 2606s (1280 bytes) directly. Since this number is
less than the number of d-c loads that the 2650 is capable of
driving (10), it can be concluded that the a-c loading is the
limitation for full-speed operation.

Increasing Fan-Out by Pull-Up Resistor

The fan-out of the 2650 bus in the logic ONE state can be
increased with a pull-up resistor. This increases the d-c fan-
out of the outputs in the logic ONE state by supplying sup-

plementary drive current. This can be seen from the ex-
ample shown in Figure 3.

2606 2606 2606
RAM RAM ~0 00— RAM
Vvee |Pout Dout Dout
2650 "o l'BLZBOG lIBLzeoe l 1BL2606
(100uA) (100uA) (100uA)
R

" T IBH2606 T'Bstoe I 1BH2606

(10pA) (10uA) (10uA)

DBUSO L2
T’ lon max = 100uA

<= lgL max = 1.6mA

“o”
AN _J
~"

n connections

FIGURE 3 Pull-up Resistors for Increased Fan-out

_ VcCmin - VOHmMax2650 _
R
[(n) - 1BH2606! - |OH2650

Logic ONE state IR

VcCmax = VOLmin2650 _
R

loL2650 - [(n) * IBL2606!

Logic ZERO state IR =

where:

VCcCmin= 4.75 volts
VCCmax= 5.25 volts

VOHmMax2650= 2650 maximum logic ONE output volt-
age
= Ve - 0.5 volts
VOLmin2650= 2650 minimum logic ZERO output
voltage
= 0 volts
IBH2606 = output logic ONE leakage current of

the 2606 RAM
=10 A

IBL2606 = output logic ZERO leakage current of
the 2606 RAM

=100 uA

I0H2650 = output logic ONE current of the 2650
= 100 LA

loL2650 = output logic ZERO current of the 2650
=1.6 mA

n = the number of 2606 type loads that can

Lo Adeliinm b ale s N2CN
pe arivern vy tne 2000

From the above equations, R can be calculated to be 17.5K
ohms. The number of 2606 loads (n) is calculated to be 12.
Six pairs of 2606 chips can be driven when the pull-ups are
added. These calculations are for d-c loading, and the a-c
(capacitive) load limitations must still be considered.

With VCCmin =45V and VCCmax =55V: n=10

R = 9K
With Viooin = 4-75V and VCCmax =5.25V:n=12
R =12KQ

3. LARGE BUFFERED SYSTEMS

In larger microcomputers it is necessary to increase the
drive capability of the CPU by adding drivers to the
outputs. A generalized 2650 microcomputer system using
additional bus drivers is illustrated in Figure 4.

~
>

2650

DDRESS BUS

ADDRESS- ADDRESS-
@ DRIVER DRIVER :>

<
2 MEMORY
o ROM/
& RAM
) 2
a o
] TRANS /‘———k> TRANS-
CEIVER <:>ff\,-— CEIVER <:>
<
[=]
Q
w
o
re ADDRESS
é :>DRIVER
10
PORTS
b kT
1 CEIVER
PERIPHERAL
DEVICES

FIGURE 4 General-Purpose Microcomputer System

ADDRESS AND DATA BUS INTERFACING TECHNIQUES = MP53

This system has a buffered address bus and a buffered
data bus. To ensure minimal loading, buffers are also 8795 8197
included between the memory and 1/O ports. With this N1 2 oot
. 1 ouT1
arrangement, the system can easily be expanded, and each
additional device adds a single load to the shared bus.
4 5 5
R IN2 ouT2 IN2 ouT2
In some cases, the configuration in Figure 4 can be simpli- L~ |~
fied as shown in Figure 5. The memory and I/O ports are
directly driven by the address driver and transceiver
. . Y Y in3 -8 \ 7 outs N3 & \ 7 ouTs
circuits.
4 >
iNg 12 | > 9 outs ing-12 -2 outa
ins 12 RN 1 outs N5 12 B 11 outs
2650
ADDRESS-
[ADDRESS >| ADDRESS | —— "> gﬂ' g
MEMORY INe 14 13 oute ine 14 13 ouTe
ROM/
RAM L~ L~
15
1 DIS2
TRANS:- pisa
“‘m CEIVER ois1 15
Dis4 ‘lll >0—‘
1/0
PORTS Input LOW current -400 uA max
:> Input HIGH current 40 uA max
Output LOW current 48 mA (@ Vo max = 0.5V)
@ Output HIGH current 5.2 mA (@ VoRmin = 2.4V)
FIGURE 6 8T95 and 8T97 Hex Tri-State Buffers
PERIPHERAL
DEVICES
8T26 8T28
4 3
DIN 3 DouT Din %b—— DouT

S

FIGURE 5 Microprocessor with Buffered Address and Data Bus R)
ROUT Rom—ﬁ
Address Driver DIN J—‘E % pout oI]\I ﬁ % Doyt
p]
The address bus driver may be a non-inverting interface RouT 2 RouT
element of the 8T family, such as the 8T95 or 8T97))
shown in Figure 6.
g oin 2 I i % bourt DIN 2 '\|: L Dout
The tri-state control inputs (DIS4 and DIS2) can be con- q P
. . 1 11
nected to ground if these buffers are always active. For RoUT — RoUT —ﬁ
DMA operations, the control inputs can be switched to a p ¢
HIGH to disconnect the processc?r from the .bus. These o 12 13 bout o 24 LN
Schottky-TTL devices have typical propagation delays |
p
of 6 ns. (See Table I11.)
RouT 14 RouT i—ﬁ
Standard TTL buffers may be used to drive the address [q
. . 15
bus. If buffers with open-collector outputs or tri-state W *Q’,;‘fﬂ [‘Qﬁ
R/E

capability are used, DMA operations can be performed.

. Input LOW current -200 uA max

Data Transcelvers Input HIGH current 25 uA max
Output LOW current 40 mA (@ Voyut =0.5V) D,
Output HIGH current -10 mA (@ VouT =2.6 V) ouT

. Output LOW current 16 mA (@ Vout =05V)

The 2650 bi-directional data lines can be driven with the Output HIGH current -2 mA (@ VouT =2.6 V) Rour

8T26 (inverting) and 8T28 (non-inverting) transceivers

(Figure 7). FIGURE 7 Tri-State Quad Bus Transceivers

ADDRESS AND DATA BUS INTERFACING TECHNIQUES = MP53

The driver can be enabled by the driver enable line (D/E, Figure 8 shows a typical application of the transceiver
active high). The receiver can be enabled by the receiver circuit for bi-directional data buffering. The 8T28 features
enable line (R/E, active low). To drive the 2650 bi- a propagation delay of 20 ns with a 300 pF capacitive load.

directional data bus, the D|N and RQUT signals can be tied
together to provide a bi-directional data path.

o ~
< <
= =
2x8T28 g g
.
2650 i
Ip
DBUSO . Ut
: . |
. ° !
L]
. . !
.
Y . |
: o |
. M |
L] 4 .
. : .
° M ° —000 —
L] ° L]
L] Y 1
. . |
° L]
. . |
. ° |
° L]
. . !
° M 1
L] 4 1
L]
. . b
L]
DBUS7 i ouT
|
|
|
|
|
|
I
|
|
|
|
OPREQ _1
R/W AJD-

FIGURE 8 Typical Application of the Transceiver Circuit

TABLE Il
MOS RAMs - SURVEY OF D-C ELECTRICAL CHARACTERISTICS
2606 2602 2604
PARAMETER SYMBOL | (256 x 4) | (1024 x 1) | (4096 x 1) | UNIT TEST CONDITIONS
. . 10 10 UA VIN = 0 to 5.25V

Maximum input load current L 0 A VIN = +5V
Maximum input LOW voltage ViL 0.65 0.65 0.6 \%
Minimum input HIGH voltage VIH 2.2 2.2 2.2 V
Maximum output LOW voltage VoL 0.45 0.45 04 x :8t z ;’g 22

- 2.4 2.4 Y IoH = —-100 A
M t |

inimum output HIGH voltage VOH 57 v IOH = —2 mA
Maximum output HIGH leakage * - _ . N

surrent IBH 10 10 10 MA CE=2.2V;VouT=4.0V
Maximum output LOW leakage _

current IBL -100 -100 MA CE =2.2V;VouyT=0.45V
Maximum input capacitance CIN 7 5 7 pF VIN = 0V
Maximum bus input capacitance Cout 10 10 6 pF VouT = 0V
Common |/0 X
Separate |/O X X

*Test conditions CS = 2.2V; VouT = 5V

SIMULATOR,VERSION1.2.....SP53

SilneLics

SIMULATOR, VERSION 1.2 SP53

A new version of the Simulator is available. This version
performs the same functions as Version 1.0 (see Simulator
Manual) with the following additional features:

1. Hexadecimal Object Module

The Simulator accepts an object module produced by the
Assembier in either decimai or hexadecimal format. The
Simulator assumes that the object module is hexadecimal,
unless the user specifies a decimal module by adding a
fourth parameter, FORMAT, to the “EXECUTE SIMU-
LATOR’ command. This command is formatted dif-
ferently depending upon the computer system on which
the Simulator is installed.

2. 8K (8192 bytes) Object Module

The Simulator reads and executes an object module
with up to 8192 bytes.

3. Decimal Input to LIMIT Command
The LIMIT command expects the number of instruc-
tions to be entered in decimal, not hexadecimal. Thus,
a “LIMIT 40" command causes the program to execute
4019 not 644g instruction. All other commands still
expect their input parameters to be in hexadecimal.

Stack Wraparound Notifi
Whenever a RETC or a RETE is executed with the
stack pointer equal to 0 or whenever a branch to sub-
routine instruction is executed with the stack pointer

equal to 7, the Simulator prints the following message:

STACK WRAPAROUND, IAR=XXXX

Andi
Liricaciorni

_.S:;

APPLICATIONS MEMO

Where XXXX identifies the address at which the wrap
around occurred.

. Termination Messages

The Simulator prints a message for every kind o
program termination:

TYPE OF TERMINATION SIMULATOR RESPONSE

1. STOP. command A trace of the last instruction
executed is printed.

2. HALT instruction A trace of the last instruction
' executed is printed.

3. LIMIT command “LIMIT REACHED=XXXX,
TAR=XXXX"" is printed. A
trace of the last instruction
executed is printed.

4. Attempt to access area "“ADDRESS OUT OF

outside of memory RANGE, IAR=XXXX" is
printed. A trace of the last
instruction executed is printed.

5. Attempt to execute "“IAR EXCEEDS MEMORY,
instruction outside TAR=XXXX"" is printed.
of memory

. Simulator Version Notification

The simulator prints the following message whenever i
starts to execute a program:

2650 SM 1000 “PIPSIM"" VERSION X.X

X.X identifies the version of the simulator currentl
executing.

©N.V. Philips’ Gloeilampenfabrieken

This informatic_m is 1urnished_for_ guidance, and with no guaramees as to it;_accuracy or completeness; its publication conveys no licence under any patent or other right, nor
does the publisher assume liability for any consequence of its use; specifications and availability of goods mentioned in it are subject to change without notice; it is not to be

reproduced in any way, in whole or in part, without the written consent of the publisher

Printed in The Netherlands 2-76

9399 509 52561

ADDRESS AND DATA BUS INTERFACING TECHNIQUES = MP53

TABLE Il
BUFFERS - SURVEY OF ELECTRICAL CHARACTERISTICS
8T09 8T95/97 | 8T96/98
PARAMETER SYMBOL | (quad) (hex) (hex) UNIT TEST CONDITIONS
Inverting X X
Non-inverting X
Maximum input LOW current Il Lmax 2 04 ey $2 x: - g;x 8:2 - ggx
Maximum input HIGH current I Hmax 40 20 20 Zﬁ S:S:‘2443V
Maximum input LOW voltage V| max 0.8 0.8 0.8 Vv Vce =MIN; Ta = 25°C
Minimum input HIGH voltage VIHmin 2.0 2.0 2.0 \' Vce =MIN; Ta = 25°C
. 0.4 \Y, loL=40mA
Maximum output LOW voltage VOLmax 05 G v oL = 48 mA
Minimum output HIGH voltage VOHmin 2.4 2.4 2.4 V I0H =-5.2 mA
Maximum output leakage
current HIGH IBH a0 40 40 MA Vo = 2.4V
Maximum output leakage . N :)
current LOW iBL -40 -40~ -40° MA Vo = 0.4V
Propagation delay tON 20** G*** B¥*¥ ns
(data to output) tOFF 20 6 6 ns
Propagation delay High Z/0 22 12 12 ns
(disable to output) High 2/1 22 10 10 ns
*Test condition Vo = 0.5V
**Test condition C|_ = 300 pF
***Test condition C|_ = 50 pF
TABLE IV
(P)ROMs - SURVEY OF D-C ELECTRICAL CHARACTERISTICS
828114 828130 825126
2608 (256 x 8) | (612 x 4) | (256 x 4)
PARAMETER SYMBOL (1024 x 8) | 825115 | 825131 825129 UNIT| TEST CONDITIONS
(512x 8) [(512x4) | (256 x 4)
Maximum input load current L 10 MA
Maximum input LOW current || max 10 -100 -100 -100 MA |V|N = 0.45V
Maximum input HIGH current |!{Hmax 10 25 40 40 MA |VIN = 5.5V
Maximum input LOW voltage |V|Lmax 0.65 0.85 .85 0.85 \
Minimum input HIGH voltage |[V|Hmin 2.2 2.0 2.0 2.0]
Maximum output LOW 0.45 Vv loL = 1.6 mA (2608)
voltage 0.5 Vv loL = 9.6 mA (82S114,
VOLmax 82S115)
0.45 0.5 VvV |loL =16 mA (825130,
82S131, 825126,
825129)
Minimum output HIGH 2.4 Y, IoH = -100 LA
voltage VOHmin 2.7 \ IoOH =-2mA
2.4 2.4 V |loH =-2.4 mA
Maximum output leakage IBH 10* 40 40 40 MA |V =5.5V; device
current deselected
Maximum output leakage IBH -10** -40 -40 -40 HA |V = 0.5V; device
current L) deselected
Maximum input capacitance CIN 7.5 5 5 5 pF
Maximum output capacitance |COUT 15 8 8 8 pF

*Test conditions Vg = 2.4V

**Test conditions Vo = 0.4V

from the world-wide Philips Group of Companies

Argentina: FAPESA I.y.C., Av. Crovara 2550, Tablada, Prov. de BUENOS AIRES, Tel. 652-7438/7478.
Australia: PHILIPS INDUSTRIES HOLDINGS LTD., Elcoma Division, 67 Mars Road, LANE COVE, 2066, N.S.W., Tel. 42 1261.
Austria: OSTERREICHISCHE PHILIPS BAUELEMENTE Industrie G.m.b.H., Triester Str. 64, A-1101 WIEN, Tel. 62 91 11.
Belgium: M.B.L.E., 80, rue des Deux Gares, B-1070 BRUXELLES, Tel 523 00 00.
Brazil: IBRAPE, Caixa Postal 7383, Av. Paulista 2073-S/Loja, SAO PAULO, SP, Tel. 287-7144.
Canada: PHILIPS ELECTRONICS LTD., Electron Devices Div., 601 Milner Ave., SCARBOROUGH, Ontario, M1B 1M8, Tel. 292-5161.
Chile: PHILIPS CHILENA S.A., Av. Santa Maria 0760, SANTIAGO, Tel. 39-4001.
Colombia: SADAPE S.A., P.O. Box 9805, Calle 13, No. 51 + 39, BOGOTAD.E. 1., Tel. 600 600.
Denmark: MINIWATT A/S, Emdrupvej 115A, DK-2400 KOBENHAVN NV, Tel. (01) 69 16 22.
Finland: OY PHILIPS AB, Elcoma Division, Kaivokatu 8, SF-00100 HELSINKI 10, Tel. 17271.
France: R.T.C. LARADIOTECHNIQUE-COMPELEC, 130 Avenue Ledru Rollin, F-75540 PARIS 11, Tel. 355-44-99.
Germany: VALVO, UB Bauelemente der Philips G.m.b.H., Valvo Haus, Burchardstrasse 19, D-2HAMBURG 1, Tel. (040) 3296-1.
Greece: PHILIPS S.A. HELLENIQUE, Elcoma Division, 52, Av. Syngrou, ATHENS, Tel. 915 311.
Hong Kong: PHILIPS HONG KONG LTD., Comp. Dept., Philips Ind. Bldg., Kung Yip St., K.C.T.L. 289, KWAI CHUNG, N.T. Tel. 12-24 51 21.
India: PHILIPS INDIA LTD., Elcoma Div., Band Box House, 254-D, Dr. Annie Besant Rd., Prabhadevi, BOMBAY-25-DD, Tel. 457 311-5.
Indonesia: P.T. PHILIPS-RALIN ELECTRONICS, Elcoma Division, ‘Timah’ Building, JI. Jen. Gatot Subroto, JAKARTA, Tel. 44 163.
Ireland: PHILIPS ELECTRICAL (IRELAND) LTD., Newstead, Clonskeagh, DUBLIN 14, Tel. 69 33 55.
Italy: PHILIPS S.P.A., Sezione Elcoma, Piazza IV Novembre 3, 1-20124 MILANO, Tel. 2-6994.
Japan: NIHON PHILIPS CORP., Shuwa Shinagawa Bldg., 26-33 Takanawa 3-chome, Minato-ku, TOKYO (108), Tel. 448-5611.
(IC Products) SIGNETICS JAPAN, LTD., TOKYO, Tel. (03) 230-1521.
Korea: PHILIPS ELECTRONICS (KOREA) LTD., Philips House, 260-199 Itaewon-dong, Yongsan-ku, C.P.O. Box 3680, SEOUL, Tel. 44-4202.
Mexico: ELECTRONICA S.A. de C.V., Varsovia No. 36, MEXICO 6, D.F., Tel. 5-33-11-80.
Netheriands: PHILIPS NEDERLAND B.V., Afd. Eionco, Boschdijk 525, NiL.-4510 EINDHOVEN, Tei. (040) 79 33 33.
New Zealand: Philips Electrical Ind. Ltd., Elcoma Division, 2 Wagener Place, St. Lukes, AUCKLAND, Tel. 867 119.
Norway: ELECTRONICA A/S., Vitaminveien 11, P.O. Box 29, Grefsen, OSLO 4, Tel. (02) 15 05 90.
Peru: CADESA, Jr. llo, No. 216, Apartado 10132, LIMA, Tel. 27 73 17.
Philippines: ELDAC, Philips Industrial Dev. Inc., 2246 Pasong Tamo, MAKATI-RIZAL, Tel. 86-89-51 to 59.
Portugal PHILIPS PORTUGESA S.A.R.L., Av. Eng. Duharte Pacheco 6, LISBOA 1, Tel. 68 31 21.
Singapore: PHILIPS SINGAPORE PTE LTD., Eicoma Div., POB 340, Toa Payoh CPO, Lorong 1, Toa Payoh, SINGAPORE 12, Tel. 5388 11.
South Africa: EDAC (Pty.) Ltd., South Park Lane, New Doornfontein, JOHANNESBURG 2001, Tel. 24/6701.
Spain: COPRESA S A, Balmes 22, BARCELONA 7, Tel. 301 63 12.
Sweden: A.B. ELCOMA, Lidingévagen 50, S-10250 STOCKHOLM 27, Tel. 08/67 97 80.
Switzerland: PHILIPS A.G., Elcoma Dept., Edenstrasse 20, CH-8027 ZURICH, Tel. 01/44 22 11.
Taiwan: PHILIPS TAIWAN LTD., 3rd FI., San Min Building, 57-1, Chung Shan N. Rd, Section 2, P.O. Box 22978, TAIPEI, Tel. 5513101-5.
Turkey: TURK PHILIPS TICARET A.S., EMET Department, Inonu Cad. No. 78-80, ISTANBUL, Tel. 43 59 10.
United Kingdom: MULLARD LTD., Mullard House, Torrington Place, LONDON WC1E 7HD, Tel. 01-580 6633.
United States: (Active devices & Materials) AMPEREX SALES CORP., 230, Duffy Avenue, HICKSVILLE, N.Y. 11802, Tel. (516) 931-6200.
(Passive devices) MEPCO/ELECTRA INC., Columbia Rd., MORRISTOWN, N.J. 07960, Tel. (201) 539-2000.
(IC Products) SIGNETICS CORPORATION, 811 East Arques Avenue, SUNNYVALE, California 94086, Tel. (408) 739-7700.
Uruguay: LUZILECTRON S.A,, Rondeau 1567, piso 5, MONTEVIDEO, Tel. 943 21.
Venezuela: IND. VENEZOLANAS PHILIPS S.A., Eicoma Dept., A. Ppal de los Ruices, Edif. Centro Colgate, Apdo 1167, CARACAS, Tel. 36 05 11.

A3 @© N.V. Philips’ Gloeilampenfabrieken

This information is furnished for guidance, and with no guarantees as to its accuracy or completeness; its publication conveys no licence under any patent or other right,
nor does the publisher assume liability for any consequence of its use; specifications and availability of goods mentioned in it are subject to change without notice; it is not
to be reproduced in any way, in whole or in part, without the written consent of the publisher.

Printed in The Netherlands 3-77 9399 509 58401

and materials

priues| Electronic pH I L' ps
% components

2650 INPUT/OUTPUT STRUCTURES

AND INTERFACES MP54

AN APPLICATION MEMO

SilNOtiCS

2650 INPUT/OUTPUT STRUCTURES AND INTERFACES

MP54

INTRODUCTION

Interfacing a microprocessor to peripheral
devices is an important part of a total mi-
crocomputer system design. The character-
istics of the interface depend to a large
extent on total system requirements and
other factors such as CPU loading and data
speed. The use of interrupts and/or DMA
structures also have an impact on the sys-
tem input/output structure. The design of
an 1/0 interface is not limited to hardware,
and hardware/software trade-offs must be
considered.

This applications memo examines the use
of the 2650’s versatile set of I/O instructions
and the interface between the 2650 and /O
ports. Interrupt and DMA-controlled I/O are
not discussed. A number of application
examples for both serial and parallel I/O are
given. Several types of input, output, and
bidirectional interface devices are also ex-
amined.

Basic 1/0 Structure of the 2650
The 2650 is equipped with extensive and
versatile input and output facilities. It can
perform both single bit input/output and 8-
bit parallel input/output.

The single bit input and output, called
Sense (pin 1) and Flag (pin 40), are associat-
ed with the Program Status Word Upper
(PSWU). The Flag output always reflects the
value of bit 6 of the PSWU, while bit 7 of the
PSWU always reflects the value of the Sense
input signal. The Sense and Flag signals can
be monitored and controlled with the PSW
instructions.

Parallel I/0 can be accomplished using the
extended or non-extended read and write
instructions. The extended and non-
extended types are distinguished by the
state of the E/NE output of the 2650.

The non-extended 1/O instructions are
single-byte instructions which accomplish
a 1-byte data transfer into or out of the 2650.
They also control the state of the D/C out-
put, which can be used as a 1-bit device
address in small systems.

The extended I/0O instructions are 2-byte
instructions. When executing extended 1/0
instructions, the second byte of the instruc-
tion is output on the lower 8 bits of the
address bus (ADRO-ADR7). This informa-
tion is normally used as an /O device ad-
dress to select 1 of up to 256 input or output
devices, but may also be used to output
control or status signals.

2650 MICROPROCESSOR APPLICATIONS MEMO

2650 1/0 FACILITIES—GENERAL BLOCK DIAGRAM

4/\
A INPUT N
SINGLE BIT PORT
vo VReoc | ©
SENSE FLAG
A 1inpuT o
PORT =
\ oY D a
CONTROL REDD @
b BUS =
4=
ot
OUTPUT 2
PORT 3
2650 c 2

|

DATA BUS

|
) °°~T°L——Jl
("

il

[%2]
2
Gl OUTPUT
@« s PORT
= < D
[T a /
@ DEVICE-{ 1 L
] ADDRESS | | PORT SE
z DECODER| | > MAX
=] A EXTEN- .
2 n D |
INPUT
~ NREDE | PORT PORTS
i o
! =
| 2
] Q
|]
| =
1 x
| w
PORT SEL !
EXTEN- MAX.
DED 256
OUTPUT| OUTPUT
WRTE_ | PORT PORTS

Figure 1

Parallel 1/0 operations may use any CPU
register as the data source or destination.
This offers significant flexibility in writing
I/0 software, because there is not a single
accumulator register to create a “bottle-
neck” in the data flow. The functional block
diagram in Figure 1 illustrates the various
1/0 facilities.

I1/0 As Part of the
Memory Address Space

The 2650 user may choose to transfer data
into orout of the processor using the memo-
ry control signals. The advantage of this
technique is that the data can be read or
written by the program with memory load
and store instructions, and data may be
directly operated upon with logical and

sinetics

arithmetic instructions. The memory refer-
encing instructions can take advantage of
the flexible addressing modes provided by
the 2650, such as indexing and indirect
addressing. A possible disadvantage of this
method is that it may be necessary to de-
code more address lines to determine the
device address than with the other 1/0
facilities.

To make use of this technique, the designer
must assign memory addresses to 1/O de-
vices and design the device interfaces to
respond to the same signals as memory.

I/0 Interface Signals

Table | summarizes the state of the 2650 1/0
interface signals for the various methods of
1/0 which are available.

2650 INPUT/OUTPUT STRUCTURES AND INTERFACES

MP54

SERIAL I/0 USING THE SENSE
INPUT AND FLAG OUTPUT

One of the 1/0O capabilities of the 2650 is
provided by the sense inputand flag output.
The sense and flag pins may be used for
single-bitinput or output of status or control
information. They can also be used to im-
plement a serial data communications
channel. Two examples of this application
are given below.

Asynchronous Serial
Communications Port

In applications where a serial type of termi-
nal (like a teletypewriter) must be connect-
ed to the microcomputer system, the sense
pin and flag pin can be used to interface with
the terminal. The basic character format for
asynchronous serial 1/0 is shown in
Figure 2.

A number of parameters of this character
format, and the transmission speed, are
different for various types of terminals. The
variable parameters are:

Baud rate (bits per second): 110, 150,
300, 600, 1200, 2400, 4800, and 9600 baud.

Number of bits per character: 5,6, 7, 0r8
bits.

Parity mode: even, odd, and no parity
Number of stop bits: 1 or 2

The control of the sense and flag pins for
asynchronous serial 1/0, with the appropri-
ate parameters and baud rate, can be done
completely with software. The hardware
involved is limited to a simple line driverand
receiver circuit which may be either an RS-
232 interface or a 20mA current loop inter-
face. The interface hardware is shown in
Figure 3.

The software necessary to accomplish the
serial 1/0 for a full-duplex line can be di-

P R,

vided into 3 parts:

e The start bit detection and verification.
After each start bit detection, the start-bit
level is verified for a low level at time
intervals of 1/6 of 1 bittime. This prevents
false start-bit recognition caused by line
noise.

e The sampling of the data bits at the mid-
bit time, echoing the data bit to the flag
output, and loading the data bit into a
CPU register.

e The input, echo and check of parity bit
and stop bits.

A timing diagram showing the start bit sam-
pling and the bit echo appears in Figure 4.

4

2650 MICROPROCESSOR APPLICATIONS MEMO
TYPE OF _ _ ADR13 | ADR14
1/0 OPERATION OPREQ | M/IO R/W ADRO-ADR7 | (E/NE) | (D/C)
Sense (Input) X X X X X X
Flag (Output) X X X X X X
Extended Read H Second Byte H X
of
Extended Write H L H Instruction H X
Non-Extended Read C H L L X L L
Non-Extended Read D H L L X L H
Non-Extended Write C H L H X L L
Non-Extended Write D H L H X L H
Memory I/0O Read H H L ADRO-ADR7 | ADR13 | ADR14
Memory 1/0 Write H H H ADRO-ADR7 | ADR13 | ADR14
X = Don’t Care
Table 1 1/0 INTERFACE SIGNAL STATE
BASIC CHARACTER FORMAT FOR ASYNCHRONOUS 1I/0
START DATA DATA DATA DATA DATA DATA DATA DATA PARITY STOP STOP
BIT BIT 1 BIT 2 BIT 3 BIT4 BITS BIT6 BIT7 BIT 8 BIT BIT1 BIT 2
R A A R A T "
1))] 1 1 1 1 1]
1 1 1] 1 [}]]] '
' 1 1] 1 1 1] 1]
) 1]] 1 1 1] ' 1 1
) 1) 1]] 1 1 1]
_____ beoccecdecaccblaccacbtaccndacacclaacccdacccacbaaad
Figure 2
SERIAL I/0 HARDWARE INTERFACES
+5V 1/28T15 +12V
1 \/ RECEWER
FLAG = V
+5V —12V
FILs i \ / TRANSMITTER
SENSE F
2650 1/2 8716 HiL{ V
RS—-232 INTERFACE
200 =
+5V-AAN \ / TOTTY
FLAG RECEIVER
1/6 7406 V
\ / TRANSMITTER
SENSE ————<———o< Y
2650
1{3,38‘;?& = 20 mA CURRENT LOOP
*V Figure 3
START SERIAL I/0 TIMING DIAGRAM
START BIT DATA DATA DATA DATA DATA DATA DATA PARITY STOP STOP
SAMPLING BIT1 BIT 2 BIT 3 BIT 4 BITS BIT 6 BIT7 BIIT BIT1 Bl"l' 2
— o
' : ' i 1 ' 1 !] '
A T I N I I N
1 ' ' ' ' ' 1 ' ' !
] !] ' ' ' | ' ' !
e e S i e B
] :] i : : : :] :
' : r I
FLAG : : |'
OUTPUT : : :
Ml +]
] L 1
Figure 4

Silnotics

2650 INPUT/OUTPUT STRUCTURES AND INTERFACES MP54

Three examples of the serial 1/0 routine
with different speeds and parameters are
presented in Figures 5 through 9. The bit
and sample delay numbers (hexadecimal)
in the definition listing (Figure 6) are for a
CPU clock frequency of 1MHz. The hexa-
decimal delay numbers for a frequency of
1.25MHz are givenin Table Il. This table also
lists the number of BDRR,RO0 instructions
that are necessary in the “bit delay and echo
subroutine” to count cycles for the approp-
riate baud rate.

The examples of figures 7, 8, and 9 have the
following parameters:

Figure 7: 110 baud, 7 data bits, even
parity and 1 stop bit.

Figure 8: 600 baud, 7 data bits, odd parity
and 2 stop bits.

Figure 9: 2400 baud, 8 data bits, no parity
and 1 stop bit.

The serial I/0 routine uses 4 CPU registers
(1 bank and RO) and affects 7 of the Program
Status Word bits; namely, Sense, Flag,
Overflow, Carry, Interdigit Carry, and the 2
Condition Code bits. The program also uses
1 level of the return address stack.

A parity error will set the Overflow bit, and a
framing error (wrong stop bit level) will set
the Interdigit Carry bit. At the end of the
routine, the input character is stored in
register R2.

2650 MICROPROCESSOR APPLICATIONS MEMO

FLOWCHART OF THE SERIAL 1I/0 ROUTINE

START

INITIALIZE PSW:
SET FLAG
RESET OVF, C, AND IDC

V+

< IS THERE A START BIT? >N_°
A

YES
Y v

SAMP DELAY 1/6 OF A BIT TIME

Y

NO
IS SENSE INPUT LOW?

YES {

HAS SAMPLE LOOP BEEN NO
DONE 3 TIMES?
YES *

RESET FLAG TO GENERATE START BIT
SET R2 TO NBR OF DATA BITS
SET R3 TO PARITY MODE

"\

2

v i

ROTATE R1 RIGHT
DELAY 1BIT TIME
SENSE AND ECHO DATA BIT
BDLY LOAD DATA BIT INTO R1
DO PARITY CHECK IN R3
DECREMENT R2

Y

NO
< TEST R2=0 >—

YES *

STORE (R1) INTO R2

1

DELAY 1BIT TIME
SENSE AND ECHO PARITY BIT

Y

CHECK CHARACTER PARITY
IF WRONG SET OVF BIT

'

DELAY 1BIT TIME
STOP SENSE AND ECHO STOP BIT

1]

TEST STOP BIT LEVEL
IF WRONG, SET IDC BIT

]

RETURN

Figure 5

PARI

silnotics 5

2650 INPUT/OUTPUT STRUCTURES AND INTERFACES

MP54

2650 MICROPROCESSOR APPLICATIONS MEMO

THIN RESEMELER VER 1.6

SERIAL 1/0 PARAMETER DEFINITIONS

PAGE 8061

LINE ADDR OBJECT E SOURCE

861 * PU760091
224
(X * *
o604 * wtkk FROGRAMMABLE SERTAL 1/0 ROUTINE #xxk *
80865 * *
8006 * WITH THIS PROGRAM THE SENSE AND FLAG INPUT/QUTFUT OF *
6087 * THE 2658 ARE USED TO INTERFACE WITH TERMINALS *
660t * SUCH RS TTY, CRT TERMINALS, ETC. VIA THE BIT SERIAL *
6069 * RSYNCHRONGUS LINE DISCIPLINE *
4018 * *
o611 * ALL CHARACTER AND LINE PARAMETERS CAN BE MODIFIED *
(¥ * SIMPLY IN THE SOFTWARE. THESE PRRAMETERS ARE BAUD *
6613 * RATE, NUMBER OF DATA BITS, PARITY MODE ANO STCF BITS *
oo14 * *
6915 * THE PROGRFM HAS BEEN SET UP FOR A FULL DUPLEX LINE *
0616 * BUT CAN ERSILY BE MODIFIED TO HALF DUPLEX MODE. *
0817 * *
8918
0619 *
8326 * DEFINITIONS OF SYMBOLS
0824 *
0822 0008 ke EQU] PROCESSOR REGISTERS
6623 Goel R EQU 1
0624 0062 k2 EQU 2
6825 6063 R3 EQ 3
8026 B8O 5 EW H’B8” PSU: SENSE
0827 0646 FEU H'4@’ FLAG
0828 @826 ¢ e H’28’ INTERDIGIT CARRY
06629 0064 OvF EQU H'ed” OVERFLOW
6038 2661 C EW Het’ CARRY/BORROW
0931 66z N EW 2 BRANCH CONDITION: NEGATIVE
932 360 N EW 3 UNCOND I TIONFL
8833 *
0035
30 *
9637 * SOFTWARE DEFINITIONS OF BAUD RATE, CHARACTER FORMAT, PARITY,
0038 * PARITY MODE, ETC.
8839 *
0648 * NUMBER OF DATA BITS:
0041 *
0042 0665 DS EQU LI CHARACTER HAS 8 DATA BITS
0843 6088 BP8 EQU H'ge”
0044 0007 087 EQU a7 CHARACTER HAS 7 DATA BITS
0045 8046 EF7 EQU H'40"
0846 6666 0BS EW H86’ CHARACTER HAS 6 DATR BITS
0047 0026 BPE EQU H' 28’
0848 0085 BOS EQ H'85 CHARACTER HFS S DATA BITS
0849 @a1e BPS EQW H'18’
6858 *
6851 * BIT DELAYS AT 1 MHZ CLOCK FREGUENCY
8852 *
6853 @OEE BRrE1 EQU HES BIT DELAY AT 118 BAUD
0854 6869 BRO3 EQU H'e9 BIT DELAY AT 386 BAUD
8635 69Ea EREE EQU H’E0’ EBIT DELAY AT 666 BAUD
8656 8953 BR1Z EQU H'53” BIT DELAY AT 1200 BAUD
0857 8825 BR24 EQU H'25" BIT DELAY AT 2406 EAUD
8858 *
9859 * START BIT SAMPLE DELAYS AT 4 MHZ CLOCKFREGQUENCY
8668 *
8861 0eAS Shet EQU H'RS” SHMPLE DELRY AT 110 BAUD
8862 063R Sbez EQU H3R° SHMPLE DELAY AT 368 BAUD
80963 0eiC SDe6 EQU H4C SAMPLE DELAY AT 606 BAUD
0864 008C SD12 EQU HBC SRMPLE DELAY AT 1268 BAUD
8865 0005 Sh24 EQU H'@5 SRMPLE DELRY AT 2466 BAUD
0866 *
8867 * PARITY MODE
8968 *
0869 0600 EF EQU H'ea” EVEN PARITY
0070 0886 0P EQU H'&0” 0D PARITY
erL *
Figure 6

SERIAL 1/0 ASSEMBLY LISTING—EXAMPLE 1

THIN ASSEMBLER VER 1
LINE ADDR OBJECT E

8673
874

@75

876

8677 000
0875 8500 7640
879 8562 7525
0659 8564 12
0881 9565 1A7D
8952 6507 0682
8083 €509 B5AS
0684 8508 F97E
2685 6500 12
0886 B50E 1A74
6987 6516 FA77
68 6512 6700
6689 6514 0567
6099 8516 7440
0091 @516 51
92 6519 B12
6692 8518 FATE
6694 851D 61
8995 6S1E (2
099 B51F 66

8108 8527 3604
@161 6529 16
8162 852A 772
ez asor 17

6111 6522 FE7E
8112 8935 FE7E
6117 8537 12
6114 6538 1A64
8115 B53A 7446
6116 @53C 1604
8117 BS3E 7646
6118 6546 6540
B119 8542 23
6126 6543 (2
6121 8544 17
8122

BL23 B0

TOTAL ASSEMBLY ERRUF

(] PHGE 8683

SOURCE

* EXAMPLE 1. FULL DUPLEX (BIT BY BIT ECHO), 116 BAUD,
* 7 DATA BITS, EVEN PARITY AND 1 STOP BIT
*

ORG H’8508°
STRT PPSU F SET FLAG TO SHITCH OFF THE LINE
CPSL OVF+C+IDC
TEST SPSU WHIT FOR START BIT
BCTR,N TEST
LODI, k2 H'@83” SET RZ TO NUMBER OF SFRMPLES
SAMP LODL, k1 SDet SET R1 TO SRMPLE DELAY
BORK, K1 $
SPSU TEST FOR START BIT VALIDITY
BCTR, N TEST IF NOT VALID, GO BACK TO TEST
BORR, R2 A
LODI, R3 EP SET RZ TO EVEN PARITY MODE
LOOT, RZ DB7 SET RZ TO NUMBEK OF DATA BITS
Py F GENERATE START EIT
EITS RRR, RL
BSTR, UN BOLY GO TO DELAY AND ECHO ROUTINE
BORR, RZ BITS TEST FOR NUMBEK OF DATA BITS
Loz 58
STRZ ke LOAD RZ WITH CHARRCTER

FAR] ESTR, UN BOLY

STOF

OvF IF WRONG PRARITY, SET OVF
] CLERR B3

TEST STOP EIT LEVEL
100 IF WRONG, SET 10C BIT

AR ARAS.
+ BIT DELAY AND ECHO ZUBROUTINE

PRRRRERE

»
BOLY LODI. Ko ERGL
BORR, KB §
BORR, Fi &
BORR, Fé §
BORR, R0 ¢
SFSU
BCTR, N ONE
CFSL F
BLTR,

SET F@ TO EIT DELAY NUMBEK

TEST DATREIT LEVEL

IF LW, ECHO A ZERG

ONE IF HIGH, ECHD A DNE
INZERT DRTAEIT INTO RL
BITL
0O FREITY CHECH
*
ENC @
Figure 7

Silnotics

2650 INPUT/OUTPUT STRUCTURES AND INTERFACES MP54

2650 MICROPROCESSOR APPLICATIONS MEMO

SERIAL 1/0 ASSEMBLY LISTING

EXAMPLE 2 EXAMPLE 3

THIN RSSEMBLER VER 1.8 PRGE 0083 THIN FESEMELER €7 1 & PRGE 6602
LINE ADDR OBJECT E SOURCE LINE ROF GBJEE
a73 T AR EOA TR AR +
0674 * EXAMPLE 2. FULL DUPLEX (BIT BY BIT ECHO), 608 BAUD, 74 v EXANFLE - FULL DUFLEN +BIT BY EIT ECHD), 2408 BALD,
0975 * 7 DATA BITS, 00D PARITY AND 2 STOF BITS, 675 ¥ & DATR EITS, MO PRETTY AND 1 STOF BIT
0076 * 13 .
9077 0000 ORG H'E568’ B77 0000 ORG HBse
0078 8500 7646 SRTPPSU F SET FLAG TO SWITCH OFF THE LINE G875 05A0 TE4D STRTFFSU F SET FLAG TO SWITCH OFF THE LINE
8079 @562 7525 CPSL OVF4CHIDC 8679 8562 755 CFEL OWFeCHI0C
6680 6504 12 TEST SPSU WAIT FOR START BIT a%h BSed 12 TEST SFSY WAIT FOR STRRT BIT
0681 8585 1A7D BCTR N TEST CTRN TEST
0882 €567 9663 LODLR2 H'63° SET R2 TO NUMBER OF SAMPLES LODi, e SET R2 T0 NUMBER OF SAMPLES
6883 €509 @51C SHHF LODL,R1 5066 SET R1 TO SAMPLE DELFY NP LODTL FA 3D24 SET FA TO SAMPLE UELRY
0634 8508 F97E BORR, K1 § BUFR.RL §
0885 850D 12] TEST FOR START BIT VALIDITY TEST FOR STRRT BIT VALIDITY
0886 @56E 1A74 BCTR.N TEST IF NOT VRLID, GO BACK TO TEST 1F NOT WALID, GO BACK TO TEST
9867 €518 FA77 BORR, K2 SR
0688 6512 6768 LODI, K3 0P SET R3 T0 00D PARITY MODE B88 uS1z SET RZ TO NUMBER OF DATR BITS
8689 €514 0607 LODT, RZ DB7 SET R2 T0 NUMBER OF DATA BITS 8889 6514 744 FSUF GENERATE START EIT
8690 €516 7448 U F GENERATE START BIT 8690 6516 51 BITS RRR, k1
8691 6518 51 BITS RRR, ki @991 6517 3660 BSTR, UN BOLY G0 T DELRY A ECHO ROUTINE
0992 €519 3B1A BSTR, UN BOLY G0 T0 DELRY AND ECHO ROUTINE 8692 6519 FATE BORK, 2 B1TS TEST FOR NUMBER OF DRTA BITS
0893 @518 FA7E BORK, R2 BITS TEST FOR NUMBER OF DATA BITS @053 €516 61 Lz -k
6694 851D 61 Loz Rt 8094 B51C (2 STz R2 LORD K2 WITH CHARFCTER
8095 851 (2 STRZ R LORD R2 WITH CHARACTER 8095 6510 6768 STOF LODL, K3 © CLERR R3
8096 @51F 3814 FART BSTR, UN BOLY 899 651F 3864 BSTR, UN EOLY
8097 €521 9AB2 BOFRN - STOL 8697 8521 16 EXI1 RETC, N TEST STOP BIT LEVEL
0898 8523 7764 PPSL OV IF WRONG FFRITY, SET OVF 6695 6522 7728 PPSL IDC IF WRONG, SET I0C BIT
8099 8525 6708 ST01 LODL,R3 8 CLERR R3 6699 8524 17 EX12 RETC, UN
2108 8527 3B6C BSTR, UN BOLY 6106 ¥
o101 8529 1AE2 BTR.N ST02 TEST STOP BIT LEVEL 161
0162 @526 7726 PPSL 10 IF WRONG, SET I0C BIT 6162 * BIT DELAY FND ECHO SUBROUTINE
8103 652D 6708 ST0Z LODL, K3 @ CLEAR R3 6102 *
8164 852F 3864 BSTR, UN BOLY 6164 8525 6425 BOLY LODI, R® BR24 SET KB TO BIT DELAY NUMBER
8185 8531 16 EXIL RETC,N TEST STOP BIT Z LEVEL 8165 @527 F87E BORR, RS $
6106 @532 7720 PPSLI0C IF WRONG, SET 1DC BIT 8106 6529 12 SPSU TEST UATA BIT LEVEL
8107 8534 17 EXI2 RETC, N 8167 852 1AB4 BCTR N ONE
8168 * 8168 @52C 7448 sy F IF LOW, ECHO R ZERD
6169 6169 85 1834 BCTR, UN BITL
0110 * BIT DELRY AND ECHO SUBROUTINE 8110 8530 7640 OE PPSU F IF HIGH, ECHO R ONE
ei11 * 8111 8532 6589 10RL, ke BFS INSERT DATH BIT INTO Ri
@112 8535 8488 BOLY LODL, RO ERO6 SET R® 10 BIT DELAY NUMBER 8112 @534 (3 BITL STRZ k3
6113 8537 F87E BORR, RO § 0113 6535 17 RETC, IN
114 8539 12 SPSU TEST DATA BIT LEVEL o114 *
8115 853R 1R64 BCTR.N ONE 8115 0608 END 8
6116 853C 7440 Py F IF LOW, ECHO R ZERD
8117 €53 1664 BCTR, UN BITY TOTAL ASSEMBLY ERRORS = 0668
8118 8548 7640 OE PPSU F IF HIGH, ECHO R ONE
8119 8542 6548 TORL, RY BF7 INSERT DATR BIT INTO Ri
8126 8544 23 BITLERZ K3
8121 8545 (3 STRZ K3 DO PARITY CHECK
8122 8546 17 RETC, UN
0123 X
6124 0008 [0]
TOTAL ASSEMBLY ERRORS = 6800
Figure 8 Figure 9
SAMPLE NUMBER OF NUMBER OF
DELAY BIT DELAY BDRR,R0 BDRR,R0
BAUD NUMBER AT | NUMBERAT |INSTRUCTIONS AT [INSTRUCTIONS AT
RATE 1.25MHz 1.25MHz 1.25MHz 1MHz
110 DO E5 5 4
300 4A C5 2 2
600 24 DE 1 1
1200 11 6A 1 1
2400 07 30 1 1

Table 2 BIT DELAY PROGRAM CONSTANTS
AT A CLOCK FREQUENCY OF 1.25MHz (HEXADECIMAL)

silnotics

2650 INPUT/OUTPUT STRUCTURES AND INTERFACES MP54

2650 MICROPROCESSOR APPLICATIONS MEMO

Data String Output INTERFACE DIAGRAM FOR DATA STRING OUTPUT

A typical application for the flag outputis a

data string output. The advantage of this OUTPUTS

output method is that it can provide a large et I I I I O LS8
number of output bits with little address or

control logic decoding. For example, this

method can be used to output data for an FLAG oy SHIFT REGISTER

LENGTH (TLEN X BPW) BITS

array of numeric displays, single bitindica-
tors, or column drivers of a parallel numeric

printer. An example of the hardware re- 0”3/‘5;% CLK
quired to implement this type of output ADR14

2650

channel is given in Figure 10.

. Figure 10
Here, the Address 14 output is used as a

data strobe signal. However, the data strobe
signal could also be built up by decoding
more address bits so that the system memo-
ry size would not be limited to 16K bytes as

. . TABLE
in this example. ADDRESS™ >

DATA ORGANIZATION FOR DATA STRING OUTPUT

RAM MEMORY

MOST — SIGNIFICANT BYTE

A listing of the program required is given in
Figure 14. The data is assumed to be located
in the system’s RAM as illustrated in
Figure 11.

. -) TABLE MSB LSB | LEAST — SIGNIFICANT BYTE
The least-significant bit of the least- LENGTH

significant byte will be output first. The table
length (TLEN) and the number of bits per
byte (BPW) can be adapted as necessary by
software modifications. The data strobe
pulse on output ADR14 is generated by Figure 11
doing the dummy instruction STRA,RO to
address H'4000'.

TIMING DIAGRAM OF DATA STRING OUTPUT ROUTINE

FLAG
OUTPUT | 63uS.

21uS. 1.5uSEC

OPREQe® __
ADR14eM/10

TIMES GIVEN FOR A CLOCK FREQUENCY 0F71 MHz

Figure 12

8 sifnotics

2650 INPUT/OUTPUT STRUCTURES AND INTERFACES

MP54

2650 MICROPROCESSOR APPLICATIONS MEMO

START

INITIALIZE:
SET R3 TO TABLE LENGTH
RESET WC BIT (PSW)

STR1

LOAD RO WITH TABLE DATA
SET R1 TO NUMBER OF
BITSPERBYTE

1

ROTA

ROTATE RORIGHT
TRANSFER BIT 7 OF RO
TO FLAG OUTPUT

AT

—

FLOWCHART OF DATA STRING OUTPUT ROUTINE

!

STRB

GENERATE DATA STROBE
SIGNAL ON ADR14 OUTPUT
DECREMENT R1

!

TEST R1=0 FOR NUMBER
OF BITS/BYTE

+YES

DECREMENT R3 1

Y

C

TEST R3 =0 FOR NUMBER
OF BYTES

EXIT

YES

Figure 13

>£_

NO

ASSEMBLY LISTING OF DATA STRING OUTPUT ROUTINE
IWIN RSSEMELEF VER 1 @ FHGE @@al
LINE ROOF OBJECT € SQURLE
a1 + D734
P88z FHARERAD R 4R
2K * *
@064 ¥ woekx DATH STRING OUTPUT ROUTINE #orkk *
6685 * *
8666 FROGRF#M TRRNSFERS THE CONTENTS OF A MEMOKY THBLE IN BIT BY *
6867 * BIT SERIAL FORM TO THE FLAG DUTPUT OF THE 2650 *
808g * *
8069 * THE TAELE LENGTH AND THE NUMBER OF BITS ARE SOFTWARE PRUGRAMMED *
8616 * *
6811 *+ B DATA STROBE OUTFUT 1S GENERATED ON THE RDDRESS 14 OUTFUT *
8612 ¥ *
6013
0814 *
8815 * DEFINITIONS OF SYMBOLS
016 *
617 GO0 Ko Eal [PROCESUR REGISTERS
0818 @081 ki EQU 1
0819 Go8z kZ EW Z
6620 6083 kX OEW 3
8621 6688 S EW H-&o” FSU: SENSE
6622 8648 F o E H' 46 FLAG
0623 o8 W EW H'ag’ FSL- 1=WITH, B=WITHOUT CARRY
0824 0682 N EW 2 BRANCH COND. © NEGATIVE
6825 8983 UN - EQU 2 UNCORDITIONAL
8626 *
0827 5687 TLEN EQU H'@7 TRBLE LENGTH
0826 0088 BPW EQU H86 NUMBER OF BITS PER BYTE
8629 *
0930 3000 ORG L
@931 6688 TRBL RES TLEN LOCATION OF TRBLE
0832 *
0033
0834 *
8935 9667 ORG H@568"
0836 6588 6707 STRT LODI, RS TLEN
0837 8562 7565 CPSL WC
6838 6584 BF G600 STRL LODA, R TABL, KX LOAD RB WITH TABLE DATA
8339 8567 8566 LODL, RL BFN SET RL TO NUMBER OF BITS PER BYTE
8846 8509 50 ROTA RKK, RO
@041 856 1AB6 BCTR.N ONE TEST BIT
8842 @560 7448 ZERO CPSU F IF ZERO, RESET FLAG
8843 B56E 1684 BLTR, UN STRB
0844 *
0845 9516 4608 FDR DATA H’48, 08°
0046 *
8847 6542 7648 ONE PPSU F IF ONE, SET FLAG
8848 8514 (L8516 STRB STRfi, R@ *ADR GENERATE STROBE SIGNAL ON A1d
8649 8517 F978 BORR, R1 ROTR TEST FOR NUMBER OF BITS
0850 8519 FBES BORR, R3 STRL TEST FOR*NUMBER OF BYTES
8851 @518 17 EXIT RETC, UN
8852 6008 END @
TOTAL ASSEMBLY ERRORS = 0008
Figure 14

PARALLEL INPUT/OUTPUT

The 2650 instruction set contains the following six input/output instructions:

NO. BYTES
WRTC, RX Write Control 1
REDC, RX Read Control 1
WRTD, RX Write Data 1
REDD, RX Read Data 1
WRTE, RX DEVA Write Extended 2
REDE, RX DEVA Read Extended 2

Sifnotics

The control signals generated by each 1/0
instruction simplify the interface circuitry
required to generate i1/O selection and tim-
ing signals. A low-cost control signal inter-
face with related timing is shown in Figures
15 and 16.

When using standard TTL and 8T series |/0O
ports, the 1/O operations can be done with-
out slowing down the system. In this case
the OPACK input could be controlled di-
rectly for all I/0 operations.

2650 INPUT/OUTPUT STRUCTURES AND INTERFACES

MP54

Non-Extended I/0

The single-byte 1/0 instructions of the 2650
arereferred to as non-extended /0. In small
systems with only two 8-bit input ports and
two 8-bit output ports, this 1/0 facility re-
quires a minimum of hardware interfacing
between the CPU and /0O ports. The signals
WRTC, WRTD, REDC, and REDD generated
by the control logic decoder in Figure 15
can be used directly as output port clock
pulses and input port enable signals, re-
spectively.

Sequential 1/0 With
Non-Extended I/O Instructions

In systems where a larger number of devices
must be serviced in sequence, the use of a
simple 8-bit output port can offer consider-
able savings in software. Normally the de-
vices could be serviced with extended 1/O
instructions. However, since the device
address is the second byte in this type of
instruction, a series of data fetch and 1/0O
instructions would be required to service
the devices in sequence.

With an 8-bit output port functioning as a
device address register, the device address
can be modified under software control. In
this way, a simple program loop can serve
up to 8 1/0O ports by rotating a single ‘1’
through a CPU register that is output as a
device address. This I/0O addressing tech-
nique may also be used advantageously in
systems where |I/O operation requests are
detected by software polling. A functional
block diagram of this technique is shown in
Figure 17.

Extended I/0

There are 2 extended 1/0 instructions in the
2650 instruction set. In these 2-byte instruc-
tions, the first byte specifies the operation
code and the data source or destination
register in the CPU. The second byte pro-
vides an 8-bit device addres ccde that is
output on the 8 least-signifi: int bits of the
address bus, ADRO through ADR7.

The control signal decoding diagram (Fig-
ure 15) can be simplified for systems using
only extended I/0O, as shown in Figure 18.
The timing diagram of Figure 16 also applies
to this decoding technique.

Device Address
Decoding Schemes

For extended 1/0 it is necessary to decode
the address lines ADRO through ADR?7 in
order to generate appropriate port selection
signals. The choice of an address decoding

scheme depends on factors such as total

10

-

2650 MICROPROCESSOR APPLICATIONS MEMO

CONTROL SIGNAL INTERFACE USING THE 74(L) S138 DECODER

+5V AAA- - OPACK (MEMORY)
OPACK (1/Q) ,e=== 4
------ - oc 1;‘ SO
Yeanea] : I
OPACK OPREQ ’ G2A YOJp——— REDC
_ Y1jo——— REDD .
i NON
Mo 8 b wrte [EXTENDED
A13-E/NE c g vih WRTD
R/W B JVv4 J—
3 REDE (EXTENDED)
_ ~ Y5
A14.D/C A ve
WRTE (EXTENDED)
2650 WRP Gl Y7 :D— {
Figure 15
I/0 INTERFACE TIMING DIAGRAMS (Figure 15)
"— 1/0 READCYCLE_A &— |/O WRITE CYCLE—A
o
OPREQ \ l
o
B -
m/io
-
TS SIGNAL SIGNAL
A13-E/NE VALID VALID
-
R/W ‘ ’
~ SIGNAL SIGNAL
A14.D/C VALID x VALID x
WRP _ DATA IN MUST __/_
BE STABLE
DATA DATA OUT
A 100 nSEC x ATA O x
ADR BUS DEVICE ADDRE DEVICE ADDRESS
AQ-A7 VALID VALID
REDC — y
REDD 4 —_
WRTC y
WRTD mm A/
REDE l
WRTE
- \
Figure 16

1/0 requirements, the type of 1/0 ports used,
and the total system configuration.

In principle, there are 2 basic methods of
device address decoding. One method is
the use ~f hardwired logic in which the
device address is fixed; the other is a hard-
ware programmacie method in which the
device addresses are-jndividually set with
jumpers or switches. Some examples of
these methods are given in Figures 19
and 20.

Inmany applications a combination of these

2 methods is used. In addition tha conitrel
& nTUIVUS S LSTUL i aUliuOn, uie CoONua!

logic can be implemented as an integral part
of the device address decoding. An example
is shown in Figure 21.

Sinetics

Memory Mapped I/0

In memory mapped I/0, the I/O devices are
treated as memory locations. An advantage
of this technique is that all memory
referencing instruction types (store, load,
arithmetic, logical, etc.) can be used directly
for 1/0 data. Device address decoding is not
necessarily more complex than for normal
extended 1/0, since all I/0 addresses could
be located in a specific address block. Of
course, this technique can only be used in
systems which do not use the full memory
address space for programs. A diagram of
the 1/0 control logic, using the ADR14 out-
put to discriminate between memory and
1/O operations, is given in Figure
device address decoding methods des-
cribed earlier can also be applied to memory
mapped 1/0.

22. The

2650 INPUT/OUTPUT STRUCTURES AND INTERFACES MP54

2650 MICROPROCESSOR APPLICATIONS MEMO

SEQUENTIAL I/0 TECHNIQUE
DBUS7 DBUS®:'
WRTD WRTC DBUS
8-BIT LATCH
| T 1 |
DBUS
PORT 7 L PORT 6 |] PORTS5 < PORT 4 L PORT 3 L PORT 2§ - PORT 1 ‘*— PORT O
Figure 17

SIMPLIFIED CONTROL LOGIC WHEN USING EXTENDED 1/0 ONLY

2/6 741504
— Yob—o m/10
M/I0 f——q G2A v 1/2 741520
L9628 Y; P> OPREQ 1
E/NE —]c va E/NE —] >°_ REDE

RIW B

74(L)S138
<
»

— R/W DOJ
Y5 p————— REDE 741530
OPREQ A~ velo—o
Y7 Jo——— WRTE _éjo— WRTE
2650 WRP G1 WRP

2650

(A) Using 1-0f-8 Decoder (B) Using Logic Gates

Figure 18

SOME POSSIBLE TECHNIQUES FOR DEVICE ADDRESS DECODING

b PoRTSEL 00
Jo-———————— PORTSEL 01
ko' —— FORTSEL 02
o ————— PORTSEL 03
- — PORTSEL 04
Jo—————————— PORTSEL 05
o PORTSEL 06
lo———————— PORTSEL 07
lo——————— PORTSEL 08
o————————— PORTSEL 09

12/6 7404
PORTSEL 01 57
ADRO———— A ..

ADR®

ADR1 PORTSEL 02

ADR] —18B

ADR2 PORTSEL 04
iAdf2 —————C 74154

ADR3 PORTSEL 08

© ® N e D WwN s O

ADR3 ——D

?VVYVV%V

ADR4 PORTSEL 10 -
10 o————— PORTSEL 0A
ADR5 PORTSEL 20 ADRS ADR4 16 11— PORTSEL (8
o——
ADR6 2G 12 PORTSEL 0C
ADR6 PORTSEL 30 13fp-—————— PORTSEL 0D
. ADR7 14 o————————— PORTSEL 0E
ADR? PORTSEL 40 15 oo FORTSELOF
(A) Each address line selects one device (maximum of eight) (B) Using a 1-out-of-16 decoder
o
Figure 19

Sinotics N

2650 INPUT/OUTPUT STRUCTURES AND INTERFACES MP54

2650 MICROPROCESSOR APPLICATIONS MEMO

HARDWARE PROGRAMMABLE DEVICE ADDRESS DECODERS

GND +BY
’—"M—l Fe-—————- 1
5K N 1 1K
DAD A __—_i_,Do—%————wv—-»rsv
]
248 1 |
—t [}
0AZ {AMA—)DD—.-'
o ol 5K AT~ i
DA3)L)OT
A boooooooo ——Do—»poarseuoz'w
5K] H
DA4 —n__.)D"“.'—
B] H) !
DAS l Do——4
o|—5K E
s >
L o o— 5K Ky i
DA7] :
P 1 2x8242
ADR®

) GNDf—

| REER 11
H -i— DA® O DATODA2Q DA3O DA4ODASQDAEQ DA
1

1

U

ADR7 5K
5K 15k] Jsk) ek 5k] |5kl |sK] sk

(A) Using Exclusive-OR Gates A0 AT A2 A3 A0 AT A2 A3
A=l A=B A=

B 8 B PORTSEL '1B'16
IN 7485 out IN 7485 o0 LD" >
A<B A<B
A>B A>B
BO Bl B2 B3 BO Bl B2 B3
1 L& B

(2]
2
o
>
o)
X
s

| o RS

o
N

>

(B) Using Comparators

Figure 20

COMBINED CONTROL LOGIC AND ADDRESS DECODING

lo———— INPULSE ¢
jo——— INPULSE 1
jo——— INPULSE 2
jo——— INPULSE 3
jo——— INPULSE 4
jo——— INPULSE 5
jo——— INPULSE 6
jo——— INPULSE 7
jo——— OUTPULSE 0
9 Jo—— OUTPULSE 1
10 jJo——— OUTPULSE 2
ADR3—’:) 11 Jo——— OUTPULSE 3
EAAAR 12 Jo——— OUTPULSE 4
13 Jo~——— OUTPULSE 5
14 Jo——— OUTPULSE 6
15 Jo———— OUTPULSE 7

74154

>
o
o
O o0 ®w»
PN DT HRWN SO

3o

11/4 8242

INPULSE AND OUTPULSE CAN BE USED
DIRECTLY TO ENABLE INPUT PORTS AND
TO CLOCK OUTPUT PORTS

5 JUMPERS FOR PROGRAMMING
GND

Figure 21

siljnotics

2650 INPUT/OUTPUT STRUCTURES AND INTERFACES

MP54

SINGLE POINT CONTROL

In many applications, the capability to set,
clear, or test a single output point selected
from a large number of output points is
required. Designs of this type can be imple-
mented using the 2650 1/O instructions.
When used as described below, the WRTE,
WRTC, and WRTD instructions become
“set/clear single-bit” instructions, while the
REDE instruction becomes a “test single-
bit” instruction.

Single Bit Output—Direct Address

The write extended instruction can be used
to select and set or clear a single output bit.
The 2 bytes of the instruction can be inter-
preted as follows:

BYTE 0

1]11]0]1]0[1|X]|X

BYTE 1

S/C| Ag|As|AslAs| As| A Ag

Aq through Ag of the second byte specify the
output selected. The S/C bit specifies
whether the bit is set or cleared. A typical
hardware configuration controlling 64
points is shown in Figure 23. Here, the
control line decoding and partial address
decoding is done by the 74LS138, which
selects one of the eight 9334s. One of the 8
latches in the selected 9334 is enabled by
ADRO, ADR1, and ADR2 and is either
cleared or set, as determined by the value of
ADRY7.

The XX field in the first byte selects 1 of the 4
available registers and outputs its contents
on the data bus. Since this information is not
used in this application, the value of XX is
not important. However, it could be used to
output an 8-bit control or status word in
conjunction with the set/clear operation.

Single Bit Output—
Indirect Address

If the address of the output to be set or
cleared must be determined at program run
time, the WRTD and WRTC instructions can
be used. The address of the output bitis first
loaded into one of the 2650 registers. A
WRTD, Rx instruction is then issued if the
bitistobe set,anda WRTC, Rx instruction is
issued if the bit is to be cleared. The bit
select is output on the data bus, and the D/C
output carries the set/clear information.
The hardware implementation can be the
same as shown in Figure 23, except that
ADRO-ADR5 are replaced by DBUSO-
DBUSS5, and ADRY is replaced by D/C.

2650 MICROPROCESSOR APPLICATIONS MEMO

ADR14
OPREQ |

R/W

WRP

1/0 CONTROL SIGNAL GENERATION FOR MEMORY MAPPED 1I/0

INPUT
(EQUIVALENT TO
REDE)

OUTPUT
(EQUIVALENT TO

2650

Figure 22

WRTE)

SIXTY-FOUR SINGLE BIT OUTPUTS USING THE 9334

ot q ouTo
Voo ————dC
cc %o
A 9334
Ao
—io__ %74 out?
q ouTs
9334
- ouT15
d ouT16
d
9334
- ouT23
d ouT24
d
9334
- ouT31
ouT32
>
9334
ouT39
% 0UT40
9334
—| ouT47
d ouT48
—d
9334
- ouTSs5
dE qo———ouTs6
C
A
,\59334
AU
—0__07 ouTe3

Figure 23

Single Bit Input

One way of doing single bit input uses the
techniques described earlier. The address
of the bit that is to be tested is loaded into
one of the 2650 registers and outputto an 8-
bit latch using an extended or non-extended
write instruction. The latch output is de-
coded to select the desired bit, which is then
applied to the Sense input pin. The 2650
Program Status Word instructions can then
be used to test the state of the Sense input
and to take appropriate program action.

silnotics

The technique described above must be
used if “indirect” bit addressing is required.
If this is not a requirement, a more efficient
implementation can be accomplished using
the extended read instruction. This tech-
nique makes use of the fact that the 2650
automatically tests the contents of aregister
every time it is used as the destination of an
operation. Thus, when the read extended
operation reads data from an input port, the
condition code bits in the program status
word are set to reflect whether the new

13

2650 INPUT/OUTPUT STRUCTURES AND INTERFACES | MP54

2650 MICROPROCESSOR APPLICATIONS MEMO

;eei'fter contents is positive, negative, or SIXTY-FOUR SINGLE BIT INPUTS USING THE 74LS251
For the single bit input application, the ino—JDg Y
second byte of the RETE, Rx instruction E_
contains the address of the input bit to be IN7—D7 s
tested. This data is applied to a bank of data |N8_74L525
selectors to select the addressed bit, which
is then applied to the most-significant bit of IN15—] FT
the data bus, DBUS7. Since this is interpret- TACSI5]
ed as the sign bit, the condition code bits in IN16——
PSL will be set to reflect whether the bit —
being tested is a one orazero. A conditional ms—yjy P
branch instruction can then be used to INZA__”LSZS
affect the desired program action. A hard-
ware implementation for 64 inputs is shown IN31— —
in Figure 24. Note that an address latch is 7415251 DBUS7
not required for this method. IN32—
IN39-———-_‘G_‘
741825
IN4O——
IN47—4’D_‘ —q¥o ©1 OPREQ
21525 " MR RIW
INPUT PORT DEVICES o —: 47 o
ﬂ:g c ADRS
] . °y B ADR4
Gated Input Ports b = ADR3
: . . . IN56——] 7415138
The simplest form of an input port is the tri- 23:5
state gate. Figure 25 illustrates the use of the 63— ADRO
8T97 high-speed hex tri-state buffer for aLS251
gated input ports. The 8T97 is non-
inverting, and the tri-state control signals Figure 24
enable the buffers in groups of 4 and groups
of 2, so that 8-bit ports can be implemented
efficiently. LT &7
. o IPED(D) TN ek IPE1(9)
An effective circuit for systems using 8- LS ! !
gated input ports is the 74251 8-to-1 multi- IPER(1) 1 % : L IPE1(1)
plexer, which has tri-state outputs that can IPED(2) ; | : H—————PE12)
interface directly with the data bus. The %"D's“ D's“'% '

. . iy s IPE1(3)
advantage of this circuit is that no external ! . ! PE1@)
address decoding logic is needed. A con- i Jois2 DIS24—! 1
figuration using gated input ports with the H ! <} - IPE1(5)
74251 multiplexer is illustrated in Figure 26. ' ::_'_'_'.':

In addition to these 2 configurations, many IPEO(6) :J\ﬁ : [ore2 oy :J‘; IPE1(6)
other input port configurations are possible IPED(7) : 1> ! - - : \‘: IPE1(7)
using standard TTL or Signetics 8T series PORTSELD] .] s PORTSEL 1
logic circuits. REDE } 8T97 i | 8797 | REDE

1PC(0) :I\ : :J‘i 1PD(0)

] -
1PC(1) ! E ! . 1PD(1)
] 1 '

Latching Input Ports e ;J&_D,sa . L ﬁ : P02
Latching input ports may be required to 1PC(3) 1 : i <} 1PD(3)
store data from an external device, which is I S
available only momentarily, before the actu- 1PC(4) v] :",{: PD)
al input operation to the microprocessor o : ! DISA 4— 1
takes place. This type of input port can be 1PC(5) . : @;———upms)
realized by connecting TTL-latch or D-type IPC(6) ! : }4+ 1PD(6)
flip-flop circuits, such as the 7475, 74100, or :J% DIs4 3 |
74175, to the inputs of a gated input port. As Pen e TN PO
illustrated in Figure 27, by using the Signet- REDC " aTe7 | ore7 | REDD
ics 8T10 Quad D-type flip-flop with tri-state B s 5 o NOTE: IPC AND IPD ARE
outputs, an 8-bit latching input port can be § 2 P20 AND IPET | or T
implemented with only 2 packages. The . ARE EXTENDED PORTS.
8T10 is functionally identical to the 74173. Figure 25

14 Silnotics

2650 INPUT/OUTPUT STRUCTURES AND INTERFACES MP54

2650 MICROPROCESSOR APPLICATIONS MEMO

GATED INPUT PORTS WITH 74251 8-to-1 MULTIPLEXERS
0 o))
s
1 D102: o A——
1 03P2—] 74251 |Y
IPED 3 osP4—] o T
9 D6— -8—
8 D7 A
77—
0 —
2=!) o
IPE14—"_._.g = Rl
6= — =3
O——' f—
IPE2 4 __: = 74351
6=, —] =
P =! — b-
IPE3 4___—2 = 74§51
6= =]
— —
0—, R
\PE4 4———2 = 74251
6—="> — =
— o
IPES 4 —3 f— 74551
6 => —] —
pu—) —3
= =
1PE6 4 —3 — 74§51
6 —> — 1
f—]
9 —
i —] 74251
3 e
IPE7 3 j— —-—
5 4
6 |
7
~
ADRO——q | B-emmm-- 3
2 2
2] [+:]
ADR1—1—) 2 2
______ ADR2—]
/O BLOCK SELECT (e.q.: A3 A4 A5-AG A7) —LI——————
REDE
Figure 26

15

2650 INPUT/OUTPUT STRUCTURES AND INTERFACES

MP54

LATCHING INPUT PORTS USING THE 8T10 (74173)

INPUT ___
cLOCK . JCLK
D 00
i
(0) o= o
6
(2) D21 8110 oo
& D3 (7a173) =
IPC LEAR
(NON- m DIS|N DISQUT
EXTENDED)
1CLK
@) DO 00
5) 1
& D 8T10 g2
It D37} (7a173) b
cLear |2
o IS DISouT
REDC.
INPUT CLK
R —— |
crocs Do 00
(
(1) D 01
@ D 8110 fo2
) (74173) fo3
pED CLEAR
(EXTENDED) ﬂjw OiSout
1CLK
@ DO 0o
(5) = 01
((6) 5 (8T10) 02
7) = 74173
CLEAR 03
REDE
PORTSEL 0
3 a

Figure 27

OPE
0

OPE
2

OUTPUT PORTS BUILT WITH STANDARD TTL AND 8T SERIES

GND
o o I
- D 0
(0 a b Ll prwyyy R (0
(1) — D1 01 "
(2)«— 7275 |2 p2] gri0 |02 2
@ a D (74173) > (2)
-] D3 03
[—cLock DIS|N ‘ Dlé:“
CLK OUT opg
1
|
(a) @
(5):: > (5)
(6) ———— 7475 8T10 (6)
(7) ~— (a7 (7
DIS|N DISouTt
[CLK L@ OUTPUT
PORTSEL 0 WENABLE
WRTE FWR—?
Q D
(0) DO Qo
(1) a D D1 [@
_ o D L m—)
(2) - 74175 D2 Q2
) > D —_r @
- D3 Q3 3
F—cLock pa] 74100 Jaa @) OPE
+5V——ICLEAR D5 Q5 > (5) 3
(4) ~ag——] Dé —-—»QB (6)
(5) ~—— b7 . (7)
(6) -———1 74175 ck2| |cuka PORTSEL 3
(7) -— WRTE
AAAAAAAA
PORTSEﬁD_ YYVYVYYYY
WRTE § ______ %
a 2]
Figure 28

16

Sinotics

2650 MICROPROCESSOR APPLICATIONS MEMO

OUTPUT PORT DEVICES

Output ports can be configured with a varie-
ty of standard TTL and 8T series flip-flops
and registers. Typical circuits include:

9334 Addressable 8-bit latch

7475 Quadruple latch

74100 8-bit latch

74175 Quadruple D-type flip-flop

8T10 Quadruple D-type flip-flop
with tri-state outputs

The 7475 and 74175 both have true and
complement outputs. One special feature of
the 8T10 is that the outputs may be disabled
(placed in a high-impedance output mode)
by the device that is connected to this out-
put port. A logic diagram using these cir-
cuits for output ports appears in Figure 28.

The 9334 is useful in systems requiring a
large number of latched outputs, since a
portion of the decoding can be done using
the on-chip 3-input decoder. A typical appli-
cation of this was shown in Figure 23. It is
also an efficient circuit for implementing
eight 8-bit output ports.

I/0 CONFIGURATIONS USING

. EEm AR s P S I e omems s as A s s

THE 8731 BIDIRECTIONAL PORT

Functional Description

The 8T31 is an 8-bit bidirectional 1/0 port
consisting of 8 clocked latches with 2 bidi-
rectional 1/0O buses, each of which has its
own control logic. Each bu's (A and B) has a
read and a write control input, and thereisa
master enable input for bus B only. The
outputs of the latches follow the inputs
when the clock is high, and latching will
occur when the clock returns low.

The 8T31 is also equipped with a “power-on
clear” circuit. If the clock input is held low
until the power supply reaches 3.5 volts, the
latches will be cleared. There is a logic
inversion between bus A and bus B. As a
result, when the 8T31 is cleared, bus A will
have all logic “1” outputs and bus B all logic
“0” outputs.

The control functions of the 8T31 are listed
in Table Ill. A functional block diagram and
asymbolic diagram of the 8T31 are illustrat-
ed in Figures 29 and 30, respectively.

2650 INPUT/OUTPUT STRUCTURES AND INTERFACES

MP54

2650 MICROPROCESSOR APPLICATIONS MEMO

8T31 FUNCTIONAL BLOCK DIAGRAM
cLK
Jia)
(11) o
fga 2 q P e
— (10) CONTROL LOGIC o—ReB
Wea—q L (Sl wgg
INVERTING S INVERTING
RECEIVERS RECEIVERS
BUS A[: 8 BUS B
(1)-(8)4 ¥ |LATCHES] Ty (16)-(23)
a ‘g
8 | B
TRANSMITTERS (:ﬂ L_‘ TRANSMITTERS
VCC=(24)
GND=(12)
Figure 29
BUS A
Rga Wga CLK BUS A
X 0 1 WRITE (A->-latch)
0 1 X READ (latch>A)
1 1 X HI-Z (Tri-state)
BUS B
RBB Wgg Wga CLK ME BUS B
X X X X 1 Hi-Z
1 0 X X 0 HI-Z
X 1 0 X 0 HI-Z
0 0 X X 0 READ (latch=B)
X 1 1 1 0 WRITE (B>latch)

Table 3 8T31 CONTROL FUNCTIONS

As shown in Table Ill, each bus can operate
independently except for the case of writing
from both bus A and B. In this case writing
from bus A will override any attempt to write
from bus B.

8T31 Applications

The control functions of the 8T31 allow it to
be used in various microcomputer input/
output applications. In the 1/O system dia-
gram of Figure 31, the 8T31 is used to
implement gated input ports, latching input
ports, output ports, and a bidirectional data
bus driver. All 1/0 ports can be controlled
directly with the device select and REDE
and WRTE lines coming from device decod-
ers and 1/O control logic.

In applications where interfacing is neces-
sary-with peripheral devices that need data
transfers in two directions, like digital

~acaattos and data link nammunication gir-
€asseiies and Gaia «ink Communicauln i

cuits, the 8T31 can be used as a bidirection-
al I/0O port. In this application, the I/O opera-

tion should be requested by interrupt or
polling to prevent simultaneous write oper-
ations from peripheral and CPU. The bidi-
rectional 1/O port concept is illustrated in
Figure 32.

Implementing an Eight-Bit Flag
Register with the 8T31

In many industrial applications, such as
process control, single bit inputs and out-
puts are used to monitor switches and de-
tectors or to drive relays and lamps. A possi-
ble solution for such a flag register would be
an eight-bit output port and a memory byte
reserved as a flag register in the system’s
RAM. The setting, resetting, or testing of
individual bits with this method of imple-
menting a flag register requires many bytes
of program memory. The output port and

tha mamnary lnopatinn rocarvaed ac a

<)) flag
i€ memory 0Cauibn reéserved as a

flag
register image must be updated after each
bit operation.

Silnotics

8T31 SYMBOLIC DIAGRAM

L[]

Rea__ WeB

Wga Res

BUS BUS

CLK ME

B

Figure 30

The 8T31 can be used to implement a flag
register without the use of a memory byte in
the system’s RAM. No additional hardware
is required, and the saving in program mem-
ory bytes for flag operations is consider-
able. A logic diagram of this application is
given in Figure 33. Listings of basic software
to set, reset, and test individual flags for
both positive and negative true outputs are
given in Figures 34 and 35.

17

2650 INPUT/OUTPUT STRUCTURES AND INTERFACES

MP54

2650 MICROPROCESSOR APPLICATIONS MEMO

THE 8T31 USED AS A GATED INPUT PORT,
LATCHING INPUT PORT, OUTPUT PORT, AND DATA BUS DRIVER

_/\r GND
onD o} PORTSEL 0 T OUTPUT
g I g é ~— ENABLE
< @@ IS 88
o0 oo ’
EEEE X ElER L
INPUT BUS BUS N o iad)
[]
(LATCHING) 8731 V] 8731
CLK ME : CLK ME
cLOCK ol g PORTSEL 1 |+ GNo QUTPUT
GND1|
| ‘Ll l ([I ey (L J’ ENABLE
EEEE 25 88
S|P oz clz 2zl
INPUT BUS BUS BUS BUS ouTRUT
PORT A 8 A B o
(LATCHING) 8731 V 8731
CLK ME CLK ME
cLock 1—>——J [PORTSEL2 | Q | I ano
GNDI'} I @ $ «— OUTPUT
‘Ll l L 2 *5Vj,j ENABLE
EEEE EERE
|z =l x|z 2l
INPUT BUS BUS PoRT
PORT A B ‘B‘US gus A
P 2
(GATED) 8T31 8131
CLK ME CLK ME
[I | ___J l1GND
avonl 5V PORTSEL 3 ouTPUT
} ENABLE
AL J I +5V—é 1
EEEE HEE
£l 2le s sl
A
NoUT \ OUTPUT
PORT BUS BUS BUS BUS PORT
A A B A B 3
(GATED) 8731 |4 8T31
CLK ME CLK ME
+5V I J::GND
REDE N _04_— MATE
+5V cik BUSA Reafo—
W
8131 oA —
OPREQ L RIW
E/NE WE Rpg jo—— 1 GND
wo ST P s —

1>° L

Figure 31

18

Sinotics

2650 INPUT/OUTPUT STRUCTURES AND INTERFACES MP54

2650 MICROPROCESSOR APPLICATIONS MEMO

THE 8T31 USED AS A BIDIRECTIONAL 1/0 PORT

INPUT OPERATION

TO INTERRUPT

—

A FLAG REGISTER IMPLEMENTED WITH THE 8T31

REQUEST > L RRC P WRTC
WRITE PORT —04-— WRTE REDC |
READ PORT REDE -
S e i
< oo x |2 2 lc o— FLG1
3 g°°|£° b———» FLG2
BUS BUS Jo———» FLG3
BUS BUS A B Jo———» FLG4
1/0 8 BUS A 8T31 bb——» FLG5
8131 e PG
CLK ME = I Mf FLG7
+5V -
+5V DBUS
—_ DBUS
PORTSEL 0
Figure 32 Figure 33
BASIC SOFTWARE FOR FLAG REGISTER OPERATIONS
THIN RSSEMBLER VER 1.8 PAGE 6681 THIN RSSEMBLER VER 1. & PRGE 6062
LINE ADDR OBJECT E SOURCE LINE AODR OBJECT E SOURCE
6901 * PO768899 8658 656C 30 RNFS REDC, RB
6082 8859 8580 449F ANDI, R H’FF/~FLGS-FLG6 RESET FLAGS 5 AND 6
@003 * * 8060 850 BO WRIC, RO RESTORE
0004 * s FLAG MANIPULATION EXAMPLES wasx * 6061 *
0685 * * 8662 * TEST FLAG(S)
6066 * THIS LISTING GIVES SOME EXANPLES HOW TO SET, RESET * 0063 *
6067 * AND TEST INDIVIDUAL BITS OF AN EXTERNAL FLAG REGISTER * 8064 0516 38 TNFG REDC, RB
0668 * BUILT WITH THE 8731 BIDIRECTIONAL 1/0 PORT * 0865 8511 F484 LR FLG2 TEST FLAG 2
8909 * INSTRUCTIONS ARE GIVEN FOR BOTH ACTIVE ‘HIGH AN 6666 8513 106660 BCTA, AL ONE BRANCH IF ONE
0816 * ACTIVE ‘LOW’ OUTPUTS, * 0867 *
o811 * * 0668 9516 38 TNFS REDC, k&
oy 8969 6517 F468 THLRB FLGSHLG6 TEST FLAGS 5 AND 6
b N 6670 8519 100650 BCTR, AL ONES BRANCH IF BOTH FRE NE
o014 * DEFINITIONS OF SYMBOLS 071 *
@15 * w72
8616 0006 Re EW @ PROCESSOR REGISTERS @873 *
6917 0601 R OEW 1 8074 * kINSTRUCTIONS FOR ACTIVE ‘HIGH OUTPUTS#+
6918 0862 R OEW 2 o875 *
8919 093 RS EQU 3 8076 851C RG H’@556"
0620 6000 Z Ew 8 BRANCH COND. © ZERO 77 *
0621 0963 W OEw 3 UNCONDITIONAL o3 * SET FLAGS)
0622 0000 A OEw e ALL BITS ARE 1 79 *
0823 * 8680 8550 36 SPFG REDC, RG
0624 0061 FLGB EQU W81’ FLAG @ 6a51 @531 44FE DL, RO H/FF/~FLGZ SET FLAG 2
8025 0082 FLGL EQU W82 FLAG1 0882 6553 BS WRIC, R8 RESTORE
8026 0964 FLGZ EW H'@4’ FLAG 2 e8sy *
0827 0668 FLG3 EQU H'B8’ FLAG 3 8884.8554 36 SPFS REDC, R®
0828 0610 FLG4 E H18° FLAG 4 0885 8555 44ED ANDL, R® H'FF/~FLGA-FLG4 SET FLAGS 1 FND 4
8029 0820 FLGS EQU W28’ FLAG S 0656 8557 BO WRTC, R8 RESTORE
0038 0846 FLG6 EQU H'48" FLAG 6 ees? *
0031 6658 FLG7 EQU H'88° FLAG 7 8655 * RESET FLAG(S)
0932 * 0689 *
8033 8660 ONE EQU H'66B8° DUMMY ADDRESS OF ROUTINE ONE’ 8899 6558 36 RPFG REDC, RO
034 0650 ONES EQU H/@658" DUMMNY ADDRESS OF ROUTINE /ONES’ 0691 8559 £404 IRLRO FLG2 RESET FLAG 2
w5 * 992 #5568 BO WRIC, R8 RESTORE
9636 0893 *
0637 * 6694 @550 36 RPFS REDC, R8
@038 * *xINSTRUCTIONS FOR ACTIVE ‘LOM’ OUTPUTS#* 8995 @550 6412 10R1, R6 FLGL+FLG4 SET FLAGS 1 AND 4
8039 * 83% 855F BO WRIC, k9 RESTORE
6048 0000 OKG H’8500° 0897 *
8941 * 0098 * TEST FLAG(S)
0842 * SET FLAG(S) 0899 *
0843 * 8106 6560 38 TPFG REDC, RO
8044 €500 36 SNFG REDC, k8 LORD FLAG REGISTER IN R@ 8101 8561 F484 TMLR® FLGZ TEST FLAG 2
8045 8561 6484 10R1, RO FLGZ SET FLAG 2 @162 8563 906600 BCFA, AL ONE BRANCH IF ONE
8046 €503 BO WRTC, RO RESTORE FLAG REGISTER 8163 *
847 * 8164 8566 20 TPFS REDC, R8
0048 €564 30 SNFS REDC, KB 6165 6567 F412 THI, R FLGI+FLG4 TEST FLAGS 1 AND 4
8049 8585 6460 10R1, k8 FLGSHLG6 SET FLAGS 5 AND 6 6166 8569 58658 BCFA, AL ONES BRANCH IF BOTH ARE ONE
0656 €567 B9 WRTC, 9 RESTORE 167 *
6851 * 0108 0600 END]
8652 * RESET FLAG(S)
@53 * TOTAL ASSEMELY ERRUKS = 0006
6654 6588 30 RNFG REDC, RO
0055 8509 44FE ANDL, RO H'FF/~FLG2 RESET FLAG 2
0856 6566 BB WRTC, RY RESTORE
Figure 34 Figure 35

sifnotics

19

5, 56‘0‘

SE£S
-
‘*Wr . ’: - ,i‘ . .
n E ’h, - ! ~,§"§F [; .
”"’"'M) ’ . .
fram tha warld-wide Philing Groun of Comnanies
I VIIE LW VYV VIV VViIiwWw § lllllrlu WA VUMM Wi WVl v W

Argentina: FAPESA I.y.C., Av. Crovara 2550, Tablada, Prov. de BUENOS AIRES, Tel. 652-7438/7478.

Australia: PHILIPS INDUSTRIES HOLDINGS LTD., Elcoma Division, 67 Mars Road, LANE COVE, 2066, N.S.W., Tel. 42 1261.

Austria: OSTERREICHISCHE PHILIPS BAUELEMENTE Industrie G.m.b.H., Triester Str. 64, A-1101 WIEN, Tel. 62 91 11.

Belgium: M.B.L.E., 80, rue des Deux Gares, B-1070 BRUXELLES, Tel 523 00 00.

Brazil: IBRAPE, Caixa Postal 7383, Av. Paulista 2073-S/Loja, SAO PAULO, SP, Tel. 287-7144.

Canada: PHILIPS ELECTRONICS LTD., Electron Devices Div., 601 Milner Ave., SCARBOROUGH, Ontario, M1B 1M8, Tel. 292-5161.

Chile: PHILIPS CHILENA S.A., Av. Santa Maria 0760, SANTIAGO, Tel. 39-40 01.

Colombia: SADAPE S.A., P.O. Box 9805, Calle 13, No. 51 + 39, BOGOTAD.E. 1., Tel. 600 600.

Denmark: MINIWATT A/S, Emdrupvej 115A, DK-2400 KOBENHAVN NV, Tel. (01) 69 16 22.

Finland: OY PHILIPS AB, Elcoma Division, Kaivokatu 8, SF-00100 HELSINKI 10, Tel. 172 71.

France: R.T.C. LARADIOTECHNIQUE-COMPELEC, 130 Avenue Ledru Rollin, F-75540 PARIS 11, Tel. 355-44-99.

Germany: VALVO, UB Bauelemente der Philips G.m.b.H., Valvo Haus, Burchardstrasse 19, D-2 HAMBURG 1, Tel. (040) 3296-1.

Greece: PHILIPS S.A. HELLENIQUE, Elcoma Division, 52, Av. Syngrou, ATHENS, Tel. 915311.

Hong Kong: PHILIPS HONG KONG LTD., Comp. Dept., Philips Ind. Bldg., Kung Yip St., K.C.T.L. 289, KWAI CHUNG, N.T. Tel. 12-24 51 21.

India: PHILIPS INDIALTD., Elcoma Div., Band Box House, 254-D, Dr. Annie Besant Rd., Prabhadevi, BOMBAY-25-DD, Tel. 457 311-5.

Indonesia: P.T. PHILIPS-RALIN ELECTRONICS, Elcoma Division, ‘Timah’ Building, JI. Jen. Gatot Subroto, JAKARTA, Tel. 44 163.

Ireland: PHILIPS ELECTRICAL (IRELAND) LTD., Newstead, Clonskeagh, DUBLIN 14, Tel. 69 33 55.

Italy: PHILIPS S.P.A., Sezione Elcoma, Piazza IV Novembre 3, 1-20124 MILANO, Tel. 2-6994.

Japan: NIHON PHILIPS CORP., Shuwa Shinagawa Bldg., 26-33 Takanawa 3-chome, Minato-ku, TOKYO (108), Tel. 448-5611.

(IC Products) SIGNETICS JAPAN, LTD., TOKYO, Tel. (03) 230-1521.

Korea: PHILIPS ELECTRONICS (KOREA) LTD., Philips House, 260-199 Itaewon-dong, Yongsan-ku, C.P.O. Box 3680, SEOUL, Tel. 44-4202.

Mexico: ELECTRONICA S.A.de C.V., Varsovia No. 36, MEXICO 6, D.F., Tel. 5-33-11-80.

Netherlands: PHILIPS NEDERLAND B.V., Afd. Elonco, Boschdijk 525, NL-4510 EINDHOVEN, Tel. (040) 79 33 33.

New Zealand: Philips Electrical Ind. Ltd., Elcoma Division, 2 Wagener Place, St. Lukes, AUCKLAND, Tel. 867 119.

Norway: ELECTRONICA A/S., Vitaminveien 11, P.O. Box 29, Grefsen, OSLO 4, Tel. (02) 15 05 90.

Peru: CADESA, Jr. llo, No. 216, Apartado 10132, LIMA, Tel. 27 73 17.

Philippines: ELDAC, Philips Industrial Dev. Inc., 2246 Pasong Tamo, MAKATI-RIZAL, Tel. 86-89-51 to 59.

Portugal PHILIPS PORTUGESA S.A.R.L., Av. Eng. Duharte Pacheco 6, LISBOA 1, Tel. 68 31 21.

Singapore: PHILIPS SINGAPORE PTE LTD., Elcoma Div., POB 340, Toa Payoh CPO, Lorong 1, Toa Payoh, SINGAPORE 12, Tel. 5388 11.

South Africa: EDAC (Pty.) Ltd., South Park Lane, New Doornfontein, JOHANNESBURG 2001, Tel. 24/6701.

Spain: COPRESA S.A., Balmes 22, BARCELONA 7, Tel. 30163 12.

Sweden: A.B. ELCOMA, Lidingévagen 50, S-10 250 STOCKHOLM 27, Tel. 08/67 97 80.

Switzerland: PHILIPS A.G., Elcoma Dept., Edenstrasse 20, CH-8027 ZURICH, Tel. 01/4422 11,

Taiwan: PHILIPS TAIWAN LTD., 3rd FI., San Min Building, 57-1, Chung Shan N. Rd, Section 2, P.O. Box 22978, TAIPEI, Tel. 5513101-5.

Turkey: TURK PHILIPS TICARET A.S., EMET Department, Inonu Cad. No. 78-80, ISTANBUL, Tel. 43 59 10.

United Kingdom: MULLARD LTD., Mullard House, Torrington Place, LONDON WC1E 7HD, Tel. 01-580 6633.

United States: (Active devices & Materials) AMPEREX SALES CORP., 230, Duffy Avenue, HICKSVILLE, N.Y. 11802, Tel. (516) 931-6200.
(Passive devices) MEPCO/ELECTRA INC., Columbia Rd., MORRISTOWN, N.J. 07960, Tel. (201) 539-2000.
(IC Products) SIGNETICS CORPORATION, 811 East Arques Avenue, SUNNYVALE California 94085, Tel. (408) 739-7700.

Uruguay: LUZILECTRON S.A., Rondeau 1567, piso 5, MONTEVIDEO, Tel. 943 21.

Venezuela: IND. VENEZOLANAS PHILIPS S.A,, Elcoma Dept., A. Ppal de los Ruices, Edif. Centro Colgate, Apdo 1167, CARACAS, Tel. 36 05 11.

’,

A3 © N.V. Philips’ Gloeilampenfabrieken

This information is furnished for'guidance4 and with no guarantees as to its accuracy or completeness; its publication conveys no licence under any patent or other right,
nor does the publisher assume liability for any consequence of its use; specifications and availability of goods mentioned in it are subject to change without notice; it is not
to be reproduced in any way, in whole or in part, without the written consent of the publisher.

Printed in The Netherlands 3-77 9399 509 58201

	02191393 philips 1976.tif
	02191394.tif
	02191395.tif
	02191396.tif
	02191397.tif
	02191398.tif
	02191399.tif
	02191400.tif
	02191401.tif
	02191402.tif
	02191403.tif
	02191404.tif
	02191405.tif
	02191406.tif
	02191407.tif
	02191408.tif
	02191409.tif
	02191410.tif
	02191411.tif
	02191412.tif
	02191413.tif
	02191414.tif
	02191415.tif
	02191416.tif
	02191417.tif
	02191418.tif
	02191419.tif
	02191420.tif
	02191421.tif
	02191422.tif
	02191423.tif
	02191424.tif
	02191425.tif
	02191426.tif
	02191427.tif
	02191428.tif
	02191429.tif
	02191430.tif
	02191431.tif
	02191432.tif
	02191433.tif
	02191434.tif
	02191435.tif
	02191436.tif
	02191437.tif
	02191438.tif
	02191439.tif
	02191440.tif
	02191441.tif
	02191442.tif
	02191443.tif
	02191444.tif
	02191445.tif
	02191446.tif
	02191447.tif
	02191448.tif
	02191449.tif
	02191450.tif
	02191451.tif
	02191452.tif
	02191453.tif
	02191454.tif
	02191455.tif
	02191456.tif
	02191457.tif
	02191458.tif
	02191459.tif
	02191460.tif
	02191461.tif
	02191462.tif
	02191463.tif
	02191464.tif
	02191465.tif
	02191466.tif
	02191467.tif
	02191468.tif
	02191469.tif
	02191470.tif
	02191471.tif
	02191472.tif
	02191473.tif
	02191474.tif
	02191475.tif
	02191476.tif
	02191477.tif
	02191478.tif
	02191479.tif
	02191480.tif
	02191481.tif
	02191482.tif
	02191483.tif
	02191484.tif
	02191485.tif
	02191486.tif
	02191487.tif
	02191488.tif
	02191489.tif
	02191490.tif
	02191491.tif
	02191492.tif
	02191493.tif
	02191494.tif
	02191495.tif
	02191496.tif
	02191497.tif
	02191498.tif
	02191499.tif
	02191500.tif
	02191501.tif
	02191502.tif
	02191503.tif
	02191504.tif
	02191505.tif
	02191506.tif
	02191507.tif
	02191508.tif
	02191509.tif
	02191510.tif
	02191511.tif
	02191512.tif
	02191513.tif
	02191514.tif
	02191515.tif
	02191516.tif
	02191517.tif
	02191518.tif
	02191519.tif
	02191520.tif
	02191521.tif
	02191522.tif
	02191523.tif
	02191524.tif
	02191525.tif
	02191526.tif
	02191527.tif
	02191528.tif
	02191529.tif
	02191530.tif
	02191531.tif
	02191532.tif
	02191533.tif
	02191534.tif
	02191535.tif
	02191536.tif
	02191537.tif
	02191538.tif
	02191539.tif
	02191540.tif
	02191541.tif
	02191542.tif
	02191543.tif
	02191544.tif
	02191545.tif
	02191546.tif
	02191547.tif
	02191548.tif
	02191549.tif
	02191550.tif
	02191551.tif
	02191552.tif
	02191553.tif
	02191554.tif
	02191555.tif
	02191556.tif
	02191557.tif
	02191558.tif
	02191559.tif
	02191560.tif
	02191561.tif
	02191562.tif
	02191563.tif
	02191564.tif
	02191565.tif
	02191566.tif
	02191567.tif
	02191568.tif
	02191569.tif
	02191570.tif
	02191571.tif
	02191572.tif
	02191573.tif
	02191574.tif
	02191575.tif
	02191576.tif
	02191577.tif
	02191578.tif
	02191579.tif
	02191580.tif
	02191581.tif
	02191582.tif
	02191583.tif
	02191584.tif
	02191585.tif
	02191586.tif

